题目内容

2.如图,圆柱底面圆的半径为$\frac{2}{π}$ cm,高为9cm,点A,B分别是圆柱两底面圆周上的点,且A,B在同一母线上,用一根棉线从点A顺着圆柱侧面绕3圈到点B,那么这根棉线的长度最短是多少?

分析 求圆柱体中两点之间的最短路径,最直接的作法,就是将圆柱体展开,然后利用两点之间线段最短解答.

解答 解:圆柱体的展开图如图所示,
用一棉线从A顺着圆柱侧面绕3圈到B的运动最短路线是:AC→CD→DB,
即在圆柱体的展开图长方形中,将长方形平均分成3个小长方形,A沿着3个长方形的对角线运动到B的路线最短,
∵圆柱底面半径为$\frac{2}{π}$cm,
∴长方形的宽即是圆柱体的底面周长=2π×$\frac{2}{π}$=4cm,
又∵圆柱高为9cm,
∴小长方形的一条边长是3cm,
根据勾股定理求得AC=CD=DB=5cm,
∴AC+CD+DB=15cm,
答:这根棉线的长度最短是15cm.

点评 本题主要考查了圆柱的计算、平面展开-路径最短问题.圆柱的侧面展开图是一个长方形,此长方形的宽等于圆柱底面周长,长方形的长等于圆柱的高.解题的关键就是把圆柱的侧面展开成长方形,“化曲面为平面”,用勾股定理解决.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网