ÌâÄ¿ÄÚÈÝ
12£®£¨1£©½â·½³Ì×é$\left\{{\begin{array}{l}{x-2y=4\;\;\;\;\;\;\;£¨1£©\;\;\;\;}\\{2x+y-3=0\;\;\;£¨2£©\;\;\;\;\;\;}\end{array}}$£¨2£©½â²»µÈʽ×é$\left\{\begin{array}{l}3£¨x-1£©£¼5x+1\\ \frac{x-1}{2}¡Ý2x-4\end{array}$£¬²¢Ö¸³öËüµÄËùÓеķǸºÕûÊý½â£®
£¨3£©ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º$\frac{{{b^2}-{a^2}}}{{{a^2}-ab}}¡Â£¨{a+\frac{{2ab+{b^2}}}{a}}£©•£¨{\frac{1}{a}+\frac{1}{b}}£©$£¬ÆäÖÐ$a={£¨{\frac{1}{2}}£©^{-1}}$+2sin60¡ã£¬b=2£¨2014-¦Ð£©0-|-$\sqrt{3}$|£®
·ÖÎö £¨1£©ÀûÓôúÈëÏûÔª·¨½â·½³Ì×飻
£¨2£©ÏÈ·Ö±ð½âÁ½¸ö²»µÈʽµÃµ½x£¾-2ºÍ$x¡Ü\frac{7}{3}$£¬È»ºó¸ù¾Ý¡°´óСС´óÖмäÕÒ¡±È·¶¨²»µÈʽ×éµÄ½â¼¯£¬ÔÙÀûÓÃÊýÖá±íʾ½â¼¯£»
£¨3£©ÏȰÑÀ¨ºÅÄÚͨ·Ö£¬ÔÙ°Ñ·Ö×Ó·ÖĸÒòʽ·Ö½âºÍ³ý·¨ÔËË㻯Ϊ³Ë·¨ÔËË㣬½Ó×ÅÔ¼·ÖµÃµ½Ôʽ=-$\frac{1}{ab}$£¬È»ºó¸ù¾ÝÁãÖ¸ÊýÃݺ͸ºÕûÊýÖ¸ÊýÃݼÆËã³öa¡¢bµÄÖµ£¬ÔÙ°Ña¡¢bµÄÖµ´úÈëÔʽ=-$\frac{1}{ab}$ÖÐÀûÓÃÆ½·½²î¹«Ê½¼ÆËã¼´¿É£®
½â´ð ½â£º£¨1£©$\left\{{\begin{array}{l}{x-2y=4\;\;\;\;\;\;\;£¨1£©\;\;\;\;}\\{2x+y-3=0\;\;\;£¨2£©\;\;\;\;\;\;}\end{array}}$£¬
ÓÉ£¨1£©µÃ£ºx=4+2y¢Û£¬
°Ñ£¨3£©´úÈ루2£©µÃ£º2£¨4+2y£©+y-3=0£¬
½âµÃy=-1£¬
°Ñy=-1´úÈ루3£©µÃx=2£¬
ËùÒÔ·½³Ì×éµÄ½âΪ$\left\{{\begin{array}{l}{x=2}\\{y=-1}\end{array}}\right.$£»
£¨2£©$\left\{\begin{array}{l}3£¨{x-1}£©£¼5x+1£¬\;¢Ù\\ \frac{x-1}{2}¡Ý2x-4.\;\;\;¢Ú\end{array}\right.$
ÓÉ¢ÙµÃx£¾-2£¬
ÓÉ¢ÚµÃ$x¡Ü\frac{7}{3}$£¬
¡àÔ²»µÈʽ×éµÄ½â¼¯ÊÇ$-2£¼x¡Ü\frac{7}{3}$£¬
¡àËüµÄ·Ç¸ºÕûÊý½âΪ0£¬1£¬2£»
£¨3£©Ôʽ=-$\frac{£¨a-b£©£¨a+b£©}{a£¨a-b£©}$¡Â$\frac{{a}^{2}+2ab+{b}^{2}}{a}$•$\frac{a+b}{ab}$
=-$\frac{£¨a+b£©£¨a-b£©}{a£¨a-b£©}$•$\frac{a}{£¨a+b£©^{2}}$•$\frac{a+b}{ab}$
=-$\frac{1}{ab}$£¬
¡ßa=2+2¡Á$\frac{\sqrt{3}}{2}$=2+$\sqrt{3}$£¬b=2¡Á1-$\sqrt{3}$=2-$\sqrt{3}$£¬
¡àÔʽ=-$\frac{1}{£¨2+\sqrt{3}£©£¨2-\sqrt{3}£©}$=-$\frac{1}{4-3}$=-1£®
µãÆÀ ±¾Ì⿼²éÁË·ÖʽµÄ»¯¼òÇóÖµ£ºÏȰѷÖʽ»¯¼òºó£¬ÔÙ°Ñ·ÖʽÖÐδ֪Êý¶ÔÓ¦µÄÖµ´úÈëÇó³ö·ÖʽµÄÖµ£®ÔÚ»¯¼òµÄ¹ý³ÌÖÐҪעÒâÔËËã˳ÐòºÍ·ÖʽµÄ»¯¼ò£®»¯¼òµÄ×îºó½á¹û·Ö×Ó¡¢·ÖĸҪ½øÐÐÔ¼·Ö£¬×¢ÒâÔËËãµÄ½á¹ûÒª»¯³É×î¼ò·Öʽ»òÕûʽ£®Ò²¿¼²éÁ˽â¶þÔªÒ»´Î·½³Ì×éºÍʵÊýµÄÔËË㣮
| A£® | µÚÒ»ÏóÏÞ | B£® | µÚ¶þÏóÏÞ | C£® | µÚÈýÏóÏÞ | D£® | µÚËÄÏóÏÞ |
| A£® | µ¥ÏîʽxµÄϵÊýºÍ´ÎÊý¶¼ÊÇ1 | |
| B£® | $\frac{1}{2}$²»Êǵ¥Ïîʽ | |
| C£® | ¶àÏîʽ3x2y+2xy-3x+yÖÐÒ»´ÎÏîµÄϵÊý·Ö±ðÊÇ-3£¬1 | |
| D£® | -$\frac{2xy}{3}$ÊÇϵÊýΪ-$\frac{2}{3}$µÄ¶þ´Îµ¥Ïîʽ |