题目内容

3.已知:如图,Rt△ABC中,∠BAC=90°,AB=AC,D是BC的中点,AE=BF.
(1)求证:DE=DF;
(2)若BC=8,求四边形AFDE的面积.

分析 (1)连接AD,证明△BFD≌△AED,根据全等三角形的性质即可得出DE=DF;
(2)根据△DAE≌△DBF,得到四边形AFDE的面积=S△ABD=$\frac{1}{2}$S△ABC,于是得到结论.

解答 证明:(1)连接AD,
∵Rt△ABC中,∠BAC=90°,AB=AC,
∴∠B=∠C=45°,
∵AB=AC,DB=CD,
∴∠DAE=∠BAD=45°,
∴∠BAD=∠B=45°,
∴AD=BD,∠ADB=90°,
在△DAE和△DBF中,
$\left\{\begin{array}{l}{AE=BF}\\{∠DAE=∠B=45°}\\{AD=BD}\end{array}\right.$,
∴△DAE≌△DBF(SAS),
∴DE=DF;

(2)∵△DAE≌△DBF,
∴四边形AFDE的面积=S△ABD=$\frac{1}{2}$S△ABC
∵BC=8,
∴AD=$\frac{1}{2}$BC=4,
∴四边形AFDE的面积=S△ABD=$\frac{1}{2}$S△ABC=$\frac{1}{2}×\frac{1}{2}×8×4$=8.

点评 本题主要考查了全等三角形的判定和等腰三角形的判定.考查了学生综合运用数学知识的能力,连接AD,构造全等三角形是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网