已知△ABC.求作:△A′B′C′,使△A′B′C′≌△ABC.

作图见解析 【解析】试题分析:本题可利用全等三角形的判定定理SSS作图,作AC=A′C′,A′B′=AB,BC=B′C′;根据全等三角形的判定可得△A′B′C′≌△ABC,注意尺规作图中作一条线段等于已知线段的作法. 试题解析:作法:①任意作一条射线B′M,以点B′为圆心,以BC为半径画弧,交射线于点C′; ②分别以点B′和点C′为圆心,以AB和AC为半径画弧,交于点A′,连接A...

如图,∠C=∠D=90°,若添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等,则以下给出的条件适合的是( )

A. AC=AD B. AB=AB C. ∠ABC=∠ABD D. ∠BAC=∠BAD

A 【解析】根据题意可知∠C=∠D=90°,AB=AB, 然后由AC=AD,可根据HL判定两直角三角形全等,故符合条件; 而B答案只知道一边一角,不能够判定两三角形全等,故不正确; C答案符合AAS,证明两三角形全等,故不正确; D答案是符合AAS,能证明两三角形全等,故不正确. 故选:A.

如图,矩形ABCD中,AB=2AD,E为AD的中点,EF⊥EC交AB于点F,连接FC.

(1)求证:△AEF∽△DCE;

(2)求tan∠ECF的值.

(1)答案见解析;(2) 【解析】(1)根据矩形的性质可知∠A="∠D" =90°,再根据三角形的内角和为180°,可知∠DCE+∠DEC=900,由已知EF⊥EC,可得:∠AEF+∠DEC=900得出∠DCE=∠AEF,即可证明⊿AEF∽⊿DCE (2)由(1)可知:⊿AEF∽⊿DCE ∴= 在矩形ABCD中,E为AD 的中点。 AB=2AD ∴ DC=AB=4AE ∴ ...

在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sinA=;②cosB=;③tanA=;④tanB=,其中正确的结论是_____ .

②③④ 【解析】∵在Rt△ABC中,∠C=90°,AB=2BC,∴。∴∠A=30°。∴∠B=60°。 ∴cosB= cos60°=,tanA= tan300=,tanB= tan600=。 ∴正确的结论是②③④。

根据下列证明过程填空:

如图,已知BD⊥AC,EF⊥AC,D、F分别为垂足,且∠1=∠4,求证:∠ADG=∠C

证明:∵BD⊥AC,EF⊥AC

∴∠2=∠3=90°( )

∴BD∥EF ( )

∴∠4=_____( )

∵∠1=∠4

∴∠1=_____( )

∴DG∥BC( )

∴∠ADG=∠C( )

见解析 【解析】试题分析:解决问题要熟悉平行线的性质和判定,能正确运用语言叙述理由,还要注意平行线的性质和判定的综合运用. 试题解析:∵BD⊥AC,EF⊥AC(已知), ∴∠2=∠3=90°, ∴BD∥EF(同位角相等,两直线平行), ∴∠4=∠5(两直线平行,同位角相等); ∵∠1=∠4(已知), ∴∠1=∠5(等量代换), ∴DG∥BC(内错角相...

如图,直线AB、CD相交于点O,EF⊥AB于O,且∠COE=50°,则∠BOD等于(  )

A. 40° B. 45° C. 55° D. 65°

A 【解析】∵EF⊥AB于O,∠COE=50°, ∴∠AOC=90°-50°=40°, ∵∠AOC与∠BOD是对顶角, ∴∠BOD=∠AOC=40°; 故选A。

已知∠AOB=40°,OC平分∠AOB,则∠AOC的补角等于_____.

160° 【解析】 ∵OC平分∠AOB,∠AOB=40°, ∴, ∴∠AOC的补角=180°-20°=160°.

如图,已知点P是∠AOB平分线上一点,PC⊥OA,PD⊥OB,垂足为C,D.

(1)∠PCD=∠PDC吗?为什么?

(2)OP是CD的垂直平分线吗?为什么?

(1)见解析;(2)见解析 【解析】试题分析:(1)由角平分线的性质易得PC=PD,根据等边对等角即可得出∠PCD=∠PDC; (2)易证△POC≌△POD,则OC=OD,根据线段垂直平分线的性质逆定理可得OP垂直平分CD. 试题解析:(1)∠PCD=∠PDC,理由如下: ∵点P是∠AOB平分线上一点,PC⊥OA,PD⊥OB, ∴PC=PD, ∴∠PCD=∠PD...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网