题目内容

7.如图,将平行四边形ABCD绕点A逆时针旋转40°,得到平行四边形AB′C′D′,若点B′恰好落在BC边上,则∠DC′B′的度数为(  )
A.60°B.65°C.70°D.75°

分析 先根据旋转得出△ABB'是等腰三角形,再根据旋转的性质以及平行四边形的性质,判定三角形AOB'和△DOC'都是等腰三角形,最后根据∠DOC'的度数,求得∠DC'B'的度数.

解答 解:由旋转得,∠BAB'=40°,AB=AB',∠B=∠AB'C',
∴∠B=∠AB'B=∠AB'C'=70°,
∵AD∥BC,
∴∠DAB'=∠AB'C'=70°,
∴AO=B'O,∠AOB=∠DOC'=40°,
又∵AD=B'C',
∴OD=OC',
∴△ODC'中,∠DC'O=$\frac{180°-40°}{2}$=70°,
故选(C)

点评 本题主要考查了旋转的性质,解决问题的关键是掌握等腰三角形的性质与平行四边形的性质.在旋转过程中,对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网