题目内容

在△ABC中,已知AB=13,BC=12,CA=5,D为边AB的中点,DE⊥AB且与∠ACB的平分线交于点E,求DE的长.
考点:圆的综合题
专题:
分析:以点D为圆心,DA为半径作圆交直线DE于点F,连接CF,AF,BF,首先利用勾股定理的逆定理证明△ABC为直角三角形,进而可得∠FCB=∠ECB,即E和F点重合,再由直角三角形中斜边上的中线等于斜边的一半即可求出DE的长.
解答:解:以点D为圆心,DA为半径作圆交直线DE于点F,连接CF,AF,BF,
∵AB=13,BC=12,CA=5.
∴BC2+CA2=AB2
∴△ABC为直角三角形,
∵DE⊥AB,
∴∠DBE=90°
∴∠FCB=
1
2
∠FDB=
1
2
×90°=45°,
∵CE平分∠ACB,
∴∠ECB=
1
2
∠ACB=45°,
∴∠FCB=∠ECB,
∵AB为圆的直径,
∴∠AEB=90°,
∴△AEB是直角三角形,
∴DE=DF=
1
2
AB=
13
2
点评:本题考查了勾股定理的逆定理的运用、圆周角定理的运用以及直角三角形中斜边上的中线等于斜边的一半性质的运用,题目的设计巧妙、新颖,解题的关键是正确添加辅助线构造直角三角形,是一道非常不错的中考题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网