题目内容

如图所示,点A1,A2,A3在x轴上,且OA1=A1A2=A2A3,分别过点A1,A2,A3作y轴的平行线,与反比例函数y=
12
x
(x>0)的图象分别交于点B1,B2,B3,分别过点B1,B2,B3作x轴的平行线,分别于y轴交于点C1,C2,C3,连接OB1,OB2,OB3,那么图中阴影部分的面积之和为
 
考点:反比例函数系数k的几何意义
专题:
分析:根据反比例函数上的点向x轴、y轴引垂线形成的矩形面积等于反比例函数的|k|,得到S△OB1C1=S△OB2C2=S△OB3C3=
1
2
|k|=6,再根据相似三角形的面积比等于相似比的平方得到3个阴影部分的三角形的面积从而求得面积和.
解答:解:根据题意可知S△OB1C1=S△OB2C2=S△OB3C3=
1
2
|k|=6,
∵OA1=A1A2=A2A3,A1B1∥A2B2∥A3B3∥y轴,
设图中阴影部分的面积从左向右依次为s1,s2,s3
则s1=
1
2
|k|=6,
∵OA1=A1A2=A2A3
∴s2:S△OB2C2=1:4,s3:S△OB3C3=1:9,
∴图中阴影部分的面积分别是s1=6,s2=
3
2
,s3=
2
3

∴图中阴影部分的面积之和=6+
3
2
+
2
3
=8
1
6

故答案为8
1
6
点评:此题综合考查了反比例函数的性质,此题难度稍大,综合性比较强,注意反比例函数上的点向x轴、y轴引垂线形成的矩形面积等于反比例函数的|k|.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网