题目内容

如图,在菱形ABCD中,∠ABC=120°,E是AB边上的中点,P是AC边上一动点,PB+PE的最小值是
3
,求AB的值.
考点:轴对称-最短路线问题,菱形的性质
专题:
分析:找出B点关于AC的对称点D,连接DE,则DE就是PE+PB的最小值
3
,进而可求出AB的值.
解答:解:连接DE交AC于P,连接BD,BP,

由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,
∴PE+PB=PE+PD=DE,
即DE就是PE+PB的最小值,
∵∠BAD=60°,AD=AB,
∴△ABD是等边三角形,
∵AE=BE,
∴DE⊥AB(等腰三角形三线合一的性质)
在Rt△ADE中,DE=
AD2-AE2
=
3

∴AD2=4,
∴AD=AB=2.
点评:本题主要考查轴对称-最短路线问题和菱形的性质的知识点,解答本题的关键,此题是道比较不错的习题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网