题目内容

19.已知菱形ABCD的周长是200,其中一条对角线长60.
(1)求另一条对角线的长度.
(2)求菱形ABCD的面积.

分析 (1)由周长可求得AB的长,不妨设AC=60,AC、BD交于点O,在Rt△AOB中可求得OB,则可求得BD的长;
(2)由菱形的面积公式可求得答案.

解答 解:
(1)如图,设AC、BD交于点O,不妨设AC=60,
∵四边形ABCD为菱形,
∴AB=BC=CD=AD,AO=OC,BO=OD,且AC⊥BD,
∵菱形的周长为200,AC=60,
∴AB=50,AO=30,
在Rt△AOB中,由勾股定理可求得OB=40,
∴BD=2OB=80,即菱形的另一条对角线的长为40;
(2)由(1)可知AC=60,BD=80,
∴S菱形ABCD=$\frac{1}{2}$AC•BD=$\frac{1}{2}$×60×80=2400.

点评 本题主要考查菱形的性质,掌握菱形的对角线互相垂直平分、四边相等是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网