ÌâÄ¿ÄÚÈÝ
5£®£¨1£©²¹³äÍêÏÂÁнáÂÛ£ºabc£¾0£»4a-2b+c£¾0£»b2-4ac£¾0
£¨2£©Èçͼ2£¬µ±a=1ʱ£¬Ò»´Îº¯Êýy=2x-5Óëy=x2+bx+c½»ÓÚA¡¢CÁ½µã£¬Çó²»µÈʽ
2x-5£¾x2+bx+cµÄ½â¼¯£®
£¨3£©Å×ÎïÏߵĶԳÆÖáÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹µÃPB+PCµÄÖµ×îС£¿Èô´æÔÚ£¬Çó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©ÓÉÅ×ÎïÏß¿ª¿Ú·½ÏòµÃµ½a£¾0£¬ÓÉÅ×ÎïÏߵĶԳÆÖáΪֱÏßx=-$\frac{b}{2a}$=2µÃµ½b£¼0£¬ÓÉÅ×ÎïÏßÓëyÖáµÄ½»µãÔÚxÖáÏ·½µÃµ½c£¼0£¬ËùÒÔabc£¾0£»ÓÉx=-2ʱ£¬º¯ÊýֵΪÕýÊýµÃµ½4a-2b+c£¾0£»ÓÉÅ×ÎïÏßÓëxÖáÓÐ2¸ö½»µãµÃµ½b2-4ac£¾0£»
£¨2£©ÀûÓöԳÆÐÔÇóµÃBµã×ø±ê£¬ÀûÓý»µãʽÇóµÃº¯Êý½âÎöʽ£¬ÕûÀí³ÉÒ»°ãÐÎʽ£¬µÃ³öÒ»´Îº¯Êýy=2x-5Óëy=x2+bx+c½»ÓÚA¡¢CÁ½µã£¬ÀûÓÃͼÏóÇóµÃ2x-5£¾x2+bx+c½â¼¯¼´¿É£»
£¨3£©ÀûÓöԳÆÐÔÇóµÃCµã¶Ô³ÆµãC¡äµÄ×ø±êΪ£¨-2£¬7£©£¬½øÒ»²½ÇóµÃÖ±ÏßBC¡ä½âÎöʽ£¬È·¶¨µãPµÄ×ø±ê¼´¿É£®
½â´ð ½â£º£¨1£©abc£¾0£»4a-2b+c£¾0£»b2-4ac£¾0£»
£¨2£©ÓÉÒÑÖªBΪ£¨-1£¬0£©¹ØÓÚÖ±Ïßx=2µÄ¶Ô³Æµã£¬
¡àBµã×ø±êΪ£¨5£¬0£©£¬
¡àÅ×ÎïÏߵĽâÎöʽΪ£ºy=£¨x+1£©£¨x-5£©£¬
µ±2x-5=x2-4x-5ʱ£¬x1=0£¬x2=6£¬
ÓÉͼ¿ÉÖª£º0£¼x£¼6ΪԲ»µÈʽµÄ½â¼¯£»
£¨3£©´æÔÚµãP£®![]()
ÀíÓÉÈçÏ£ºÓÉ£¨2£©¿ÉÖª£ºµ±x=6ʱ£¬y=7
¡àCµã×ø±êΪ£¨6£¬7£©£¬
C¡äµãΪCµã¹ØÓÚÖ±Ïßx=2µÄ¶Ô³Æµã£¬ÔòC¡äµÄ×ø±êΪ£¨-2£¬7£©£¬
ÉèÖ±ÏßBC¡äµÄ·½³ÌΪ£ºy=mx+n£¬
Ôò$\left\{\begin{array}{l}{-2m+n=7}\\{5m+n=0}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{m=-1}\\{n=5}\end{array}\right.$£¬
¼´y=-x+5£¬
µ±x=2ʱ£¬y=3¼´Pµã×ø±êΪ£¨2£¬3£©£®
µãÆÀ ´ËÌ⿼²é¶þ´Îº¯Êý×ÛºÏÌ⣬´ý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽ£¬Ò»´Îº¯ÊýÓë¶þ´Îº¯ÊýµÄ½»µãÎÊÌ⣬ÀûÓÃͼÏó½â¾ö²»µÈ¹ØÏµ£¬ÒÔ¼°ÀûÓöԳÆÐÔÇó×î¶Ì¾àÀ룬×ÛºÏÐÔ½ÏÇ¿£®
£¨1£©ac£¾0£»
£¨2£©·½³Ìax2+bx+c=0µÄÁ½¸ùÊÇx1=-1£¬x2=3£»
£¨3£©2a-b=0£»
£¨4£©µ±x£¾1ʱ£¬yËæxµÄÔö´ó¶ø¼õС£»
ÔòÒÔÉϽáÂÛÖÐÕýÈ·µÄÓУ¨¡¡¡¡£©
| A£® | 1¸ö | B£® | 2¸ö | C£® | 3¸ö | D£® | 4¸ö |
| A£® | 2£¬3£¬5 | B£® | 4£¬5£¬6 | C£® | 11£¬12£¬15 | D£® | 8£¬15£¬17 |