题目内容

6.已知矩形ABCD中,对角线AC与BD相交于点O.分别过点D、C作AC、BD的平行线交于点E.
(1)求证:四边形OCED为菱形.
(2)若AB=3,BC=4,求菱形OCED的面积.

分析 (1)首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD,即可判定四边形CODE是菱形,
(2)由矩形的性质可知四边形OCED的面积为矩形ABCD面积的一半,问题得解.

解答 (1)结论:四边形OCED的形状是菱形,
证明:∵CE∥BD,DE∥AC,
∴四边形CODE是平行四边形,
∵四边形ABCD是矩形,
∴AC=BD,OA=OC,OB=OD,
∴OD=OC,
∴四边形CODE是菱形;
(2)解:∵AB=3,BC=4,
∴矩形ABCD的面积=3×4=12,
∵S△ODC=$\frac{1}{4}$S矩形ABCD=3,
∴四边形OCED的面积=2S△ODC=6.

点评 本题考查了菱形的判定与性质、矩形的性质等知识,熟练掌握菱形的判定是解决问题的关键,记住矩形的对角线把矩形分成面积相等的4个三角形,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网