题目内容

某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y= -2x+100.(利润=售价-制造成本)

(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;

(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?

(1)z= -2x2+136x-1800;(2)当销售单价为34元时,每月能获得最大利润,最大利润是512万元; 【解析】试题分析:(1)根据每月的利润z=(x-18)y,再把y=-2x+100代入即可求出z与x之间的函数解析式, (2)把z=350代入z=-2x2+136x-1800,解这个方程即可,将z═-2x2+136x-1800配方,得z=-2(x-34)2+512,即可求出当...
练习册系列答案
相关题目

若|a﹣2|+b2﹣2b+1=0,则a=__,b=__.

2 1 【解析】∵|a﹣2|+b2﹣2b+1=0, ∴|a﹣2|+(b-1)2=0, ∴a-2=0,b-1=0, ∴a=2,b=1.

如图,直线AB、CD被直线EF所截,∠1、∠2是同位角,如果∠1≠∠2,那么AB与CD不平行.用反证法证明这个命题时,应先假设:_____.

AB∥CD 【解析】试题分析:利用假设法来进行证明时,首先假设结论成立,即应先假设AB∥CD.

如图,在相距2米的两棵树间拴一根绳子做一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小芳距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米.

0.5 【解析】试题分析:首先以点名所在的直线为x轴,最低点所在的直线为y轴建立平面直角坐标系,然后求出二次函数的解析式,最后计算出顶点坐标,顶点坐标的纵坐标就是距离地面的距离.

如图,正方形ABCD的边长为1,E、F分别是边BC和CD上的动点(不与正方形的顶点重合),不管E、F怎样动,始终保持AE⊥EF.设BE=x,DF=y,则y是x的函数,函数关系式是(  )

A. y=x+1 B. y=x-1 C. y=x2-x+1 D. y=x2-x-1

C 【解析】试题分析:易证△ABE∽△ECF,根据相似三角形对应边的比相等即可求解. 【解析】 ∵∠BAE和∠EFC都是∠AEB的余角. ∴∠BAE=∠FEC. ∴△ABE∽△ECF 那么AB:EC=BE:CF, ∵AB=1,BE=x,EC=1﹣x,CF=1﹣y. ∴AB•CF=EC•BE, 即1×(1﹣y)=(1﹣x)x. 化简得:y=x2...

直线y=3x-3与抛物线y=x2 -x+1的交点的个数是________ .

1 【解析】【解析】 假设直线y=3x﹣3与抛物线y=x2﹣x+1有交点,则3x﹣3=x2﹣x+1,x2﹣4x+4=0,∵△=16﹣16=0,∴方程有两个相等的实数根,∴直线y=3x﹣3与抛物线y=x2﹣x+1有1个交点. 故答案为:1.

如图,如果某个斜坡AB的长度为10米,且该斜坡最高点A到地面BC的铅垂高度为8米,求该斜坡的坡比

【解析】试题分析:首先根据AB和AC的长度以及勾股定理得出BC的长度,最后根据坡比的计算法则得出答案. 试题解析:∵某个斜坡AB的长度为10米,且该斜坡最高点A到地面BC的铅垂高度为8米, ∴水平距离BC= =6(m), 则该斜坡的坡比是: .

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网