题目内容
某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y= -2x+100.(利润=售价-制造成本)
(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;
(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?
若|a﹣2|+b2﹣2b+1=0,则a=__,b=__.
如图,直线AB、CD被直线EF所截,∠1、∠2是同位角,如果∠1≠∠2,那么AB与CD不平行.用反证法证明这个命题时,应先假设:_____.
![]()
如图,在活动课上,小明和小红合作用一副三角板来测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是1.7m,他调整自己的位置,设法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M在同一条直线上,测得旗杆顶端M仰角为45°;小红的眼睛与地面的距离(CD)是1.5m,用同样的方法测得旗杆顶端M的仰角为30°.两人相距28米且位于旗杆两侧(点B、N、D在同一条直线上).求出旗杆MN的高度.(参考数据:
,结果保留整数.)
![]()
如图,小敏同学想测量一棵大树的高度,她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°.已知小敏同学身高(AB)为1.6m,则这棵树的高度为(结果精确到0.1m,
≈1.73)( )
![]()
A. 3.5m B. 3.6m C. 4.3m D. 5.1m
如图,在相距2米的两棵树间拴一根绳子做一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小芳距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米.
![]()
如图,正方形ABCD的边长为1,E、F分别是边BC和CD上的动点(不与正方形的顶点重合),不管E、F怎样动,始终保持AE⊥EF.设BE=x,DF=y,则y是x的函数,函数关系式是( )
![]()
A. y=x+1 B. y=x-1 C. y=x2-x+1 D. y=x2-x-1
直线y=3x-3与抛物线y=x2 -x+1的交点的个数是________ .
如图,如果某个斜坡AB的长度为10米,且该斜坡最高点A到地面BC的铅垂高度为8米,求该斜坡的坡比
![]()