题目内容

14.某超市预购进A、B两种品牌的T恤共200件,已知两种T恤的进价如表所示,设购进A种T恤x件,且所购进的两种T恤全部卖出,获得的总利润为W元.
 品牌 进价/(元/件) 售价/(元/件)
 A 50 80
 B 40 65
(1)求W关于x的函数关系式;
(2)如果购进两种T恤的总费用不超过9500元,那么超市如何进货才能获得最大利润?并求出最大利润.(提示:利润=售价-进价)

分析 (1)由总利润=A品牌T恤的利润+B品牌T恤的利润就可以求出w关于x的函数关系式;
(2)根据“两种T恤的总费用不超过9500元”建立不等式求出x的取值范围,由一次函数性质就可以求出结论.

解答 解:(1)设购进A种T恤x件,则购进B种T恤(200-x)件,由题意得:
w=(80-50)x+(65-40)(200-x),
w=30x+5000-25x,
w=5x+5000.
答:w关于x的函数关系式为w=5x+5000;
(2)∵购进两种T恤的总费用不超过9500元,
∴50x+40(200-x)≤9500,
∴0≤x≤150.
∵w=5x+5000.
∴k=5>0
∴w随x的增大而增大,
∴x=150时,w的最大值为5750.
∴购进A种T恤150件.
∴购进A种T恤150件,购进B种T恤50件可获得最大利润,最大利润为5750元.

点评 本题考查了由销售问题的数量关系求函数的解析式的运用,列一元一次不等式解实际问题的运用,一次函数的性质的运用,解答时求出函数的解析式是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网