题目内容

14.在△ABC与△A′B′C′中,有:①$\frac{AB}{A′B′}$=$\frac{BC}{B′C′}$; ②$\frac{BC}{B′C′}$=$\frac{AC}{A′C′}$;③∠A=∠A′;④∠C=∠C′,如果从中任取两个组成一组,那么能判断△ABC∽△A′B′C′的共有组数是(  )
A.1B.2C.3D.4

分析 根据相似三角形的判定定理:三条对应边的比相等的三角形相似可得需①②组合,对应边成比例且夹角相等的三角形相似可得②④组合,有两角对应相等的三角形相似可得③④组合,则可求得答案.

解答 解:①②组合,
∵$\frac{AB}{A′B′}$=$\frac{BC}{B′C′}$,$\frac{BC}{B′C′}$=$\frac{AC}{A′C′}$,
∴$\frac{AB}{A′B′}$=$\frac{BC}{B′C′}$=$\frac{AC}{A′C′}$;
∴△ABC∽△A′B′C′(三条对应边的比相等的三角形相似);
②④组合,
∵$\frac{BC}{B′C′}$=$\frac{AC}{A′C′}$,∠C=∠C′,
∴△ABC∽△A′B′C′(对应边成比例且夹角相等的三角形相似);
③④组合,
∵∠A=∠A′,∠C=∠C′,
∴△ABC∽△A′B′C′(有两角对应相等的三角形相似).
∴能判断△ABC∽△A′B′C′的共有3组.
故选C.

点评 此题考查了相似三角形的判定.此题难度不大,解题的关键是熟记相似三角形的判定定理,掌握定理的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网