题目内容

5.先化简,再求值:($\frac{{x}^{2}-1}{x-1}+x-3$)$÷\frac{x-1}{x+1}$,其中x=-$\frac{3}{2}$.

分析 首先化简分式,进而利用分式乘除运算法则求出答案.

解答 解:($\frac{{x}^{2}-1}{x-1}+x-3$)$÷\frac{x-1}{x+1}$
=(x+1+x-3)•$\frac{x+1}{x-1}$
=(2x-2)•$\frac{x+1}{x-1}$
=2x+2,
当x=-$\frac{3}{2}$时,原式=2×(-$\frac{3}{2}$)+2=-1.

点评 此题主要考查了分式的混合运算,正确化简分式是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网