题目内容
12.(1)$\left\{\begin{array}{l}{3x-2y=5}\\{x+3y=9}\end{array}\right.$(2)$\left\{\begin{array}{l}{\frac{x}{2}-\frac{y}{3}=\frac{5}{6}}\\{x-2y=-3}\end{array}\right.$.
分析 (1)方程组利用加减消元法求出解即可;
(2)方程组整理后,利用加减消元法求出解即可.
解答 解:(1)$\left\{\begin{array}{l}{3x-2y=5①}\\{x+3y=9②}\end{array}\right.$,
②×3-①得:11y=22,即y=2,
把y=2代入②得:x=3,
则方程组的解为$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$;
(2)方程组整理得:$\left\{\begin{array}{l}{3x-2y=5①}\\{x-2y=-3②}\end{array}\right.$,
①-②得:2x=8,即x=4,
把x=4代入②得:y=3.5,
则方程组的解为$\left\{\begin{array}{l}{x=4}\\{y=3.5}\end{array}\right.$.
点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
练习册系列答案
相关题目