题目内容
13.已知,AB∥CD,点E为射线FG上一点.(1)如图1,直接写出∠EAF、∠AED、∠EDG之间的数量关系;
(2)如图2,当点E在FG延长线上时,求证:∠EAF=∠AED+∠EDG;
(3)如图3,AI平分∠BAE,DI交AI于点I,交AE于点K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求
∠EKD的度数.
分析 (1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;
(2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG;
(3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI=$\frac{1}{2}$α+5°,再根据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=$\frac{1}{2}$α+5°+α+10°+20°,求得α=70°,即可根据三角形内角和定理,得到∠EKD的度数.
解答 解:(1)∠AED=∠EAF+∠EDG.![]()
理由:如图1,过E作EH∥AB,
∵AB∥CD,
∴AB∥CD∥EH,
∴∠EAF=∠AEH,∠EDG=∠DEH,
∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;
(2)证明:如图2,设CD与AE交于点H,
∵AB∥CD,
∴∠EAF=∠EHG,
∵∠EHG是△DEH的外角,
∴∠EHG=∠AED+∠EDG,
∴∠EAF=∠AED+∠EDG;
(3)∵AI平分∠BAE,
∴可设∠EAI=∠BAI=α,则∠BAE=2α,
∵AB∥CD,
∴∠CHE=∠BAE=2α,
∵∠AED=20°,∠I=30°,∠DKE=∠AKI,
∴∠EDI=α+30°-20°=α+10°,
又∵∠EDI:∠CDI=2:1,
∴∠CDI=$\frac{1}{2}$∠EDK=$\frac{1}{2}$α+5°,
∵∠CHE是△DEH的外角,
∴∠CHE=∠EDH+∠DEK,
即2α=$\frac{1}{2}$α+5°+α+10°+20°,
解得α=70°,
∴∠EDK=70°+10°=80°,
∴△DEK中,∠EKD=180°-80°-20°=80°.
点评 本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.
| A. | 三条高的交点 | B. | 三条中线的交点 | ||
| C. | 三条角平分线的交点 | D. | 不能确定 |
| A. | 向东走20千米与向西走15千米 | B. | 收入200元与亏损30元 | ||
| C. | 超过0.05mm与不足0.03mm | D. | 上升10米和下降7米 |
| A. | 18,17.5,5 | B. | 18,17.5,3 | C. | 18,18,3 | D. | 18,18,1 |