题目内容
4.已知关于x,y的方程组$\left\{{\begin{array}{l}{ax+by=10}\\{mx-ny=8}\end{array}}\right.$的解是$\left\{{\begin{array}{l}{x=1}\\{y=2}\end{array}}\right.$,则关于x,y的方程组$\left\{{\begin{array}{l}{\frac{1}{2}a(x+y)+\frac{1}{3}b(x-y)=10}\\{\frac{1}{2}m(x+y)-\frac{1}{3}n(x-y)=8}\end{array}}\right.$的解为( )| A. | $\left\{{\begin{array}{l}{x=1}\\{y=2}\end{array}}\right.$ | B. | $\left\{{\begin{array}{l}{x=2}\\{y=1}\end{array}}\right.$ | C. | $\left\{{\begin{array}{l}{x=4}\\{y=-2}\end{array}}\right.$ | D. | $\left\{{\begin{array}{l}{x=3}\\{y=2}\end{array}}\right.$ |
分析 把所求方程组转化为关于a、b的形式,然后根据已知方程组的解列出关于x、y的方程组的解,再求解即可.
解答 解:方程组变形为$\left\{\begin{array}{l}{a•\frac{x+y}{2}+b•\frac{x-y}{3}=10}\\{m•\frac{x+y}{2}+n•\frac{x-y}{3}=8}\end{array}\right.$,
∵关于x,y的方程组$\left\{{\begin{array}{l}{ax+by=10}\\{mx-ny=8}\end{array}}\right.$的解是$\left\{{\begin{array}{l}{x=1}\\{y=2}\end{array}}\right.$,
∴所求的方程组中$\left\{\begin{array}{l}{\frac{x+y}{2}=1}\\{\frac{x-y}{3}=2}\end{array}\right.$,
整理得,$\left\{\begin{array}{l}{x+y=2}\\{x-y=6}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=4}\\{y=-2}\end{array}\right.$,
即所求方程组的解是$\left\{\begin{array}{l}{x=4}\\{y=-2}\end{array}\right.$.
故选C.
点评 本题考查了二元一次方程组的解,把所求方程整理成关于a、b、m、n的形式,并列出关于x、y的方程组是解题的关键,整体思想的利用是解题的关键.
练习册系列答案
相关题目