ÌâÄ¿ÄÚÈÝ
9£®ÒÑÖª£ºÈçͼ¢Ù£¬ÔÚRt¡÷ABCÖУ¬AB¡ÍAC£¬AB=3cm£¬BC=5cm£¬½«¡÷ABCÈÆACÖеãÐýת180¡ãµÃ¡÷CDA£¬Èçͼ¢Ú£¬ÔÙ½«¡÷CDAÑØACµÄ·½ÏòÒÔ1cm/sµÄËÙ¶ÈÆ½ÒƵõ½¡÷NDP£»Í¬Ê±£¬µãQ´ÓµãC³ö·¢£¬ÑØCB·½ÏòÒÔ1cm/sµÄËÙ¶ÈÔ˶¯£¬µ±¡÷NDPÍ£Ö¹Æ½ÒÆÊ±£¬µãQҲֹͣÔ˶¯£¬ÉèÔ˶¯Ê±¼äΪt£¨s£©£¨0£¼t£¼4£©£®½â´ðÏÂÁÐÎÊÌ⣮£¨1£©µ±tΪºÎֵʱ£¬PQ¡ÎAB£¿
£¨2£©Éè¡÷PQCµÄÃæ»ýΪy£¨cm2£©£¬ÇóyÓëtÖ®¼äµÄº¯Êý¹ØÏµÊ½£»
£¨3£©ÊÇ·ñ´æÔÚijһʱ¿Ìt£¬Ê¹S¡÷QDC£ºSËıßÐÎABQP=1£º4£¿Èô´æÔÚ£¬Çó³ötµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨4£©ÊÇ·ñ´æÔÚijһʱ¿Ìt£¬Ê¹PQ¡ÍDQ£¿Èô´æÔÚ£¬ÇëÖ±½Óд³ötµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©Ïȸù¾Ý¹´¹É¶¨ÀíÇóAC=4£¬¸ù¾ÝÆ½ÒÆµÄÐÔÖÊºÍÆ½ÐÐËıßÐεÄÐÔÖʵãºPQ¡ÎAB£¬ÁбÈÀýʽΪ$\frac{CP}{CA}$=$\frac{CQ}{CB}$£¬´úÈë¿ÉÇótµÄÖµ£»
£¨2£©×÷¸¨ÖúÏߣ¬¹¹½¨¸ßÏߣ¬ÀûÓÃÃæ»ý·¨ÇóAEµÄ³¤£¬ÀûÓù´¹É¶¨Àí¼ÆËãCEµÄ³¤£¬Ö¤Ã÷¡÷CPF¡×¡÷CAE£¬ÁÐʽ¿É±íʾPFµÄ³¤£¬¸ù¾ÝÃæ»ý¹«Ê½¼ÆËãyÓëtÖ®¼äµÄº¯Êý¹ØÏµÊ½£»
£¨3£©¸ù¾Ýͬµ×µÈ¸ßµÄÁ½¸öÈý½ÇÐÎÃæ»ýÏàµÈµÃ£ºS¡÷PQC=S¡÷MQC£¬ÓÉÒÑÖªµÃ£ºS¡÷MQC£ºS¡÷ABC=1£º5£¬°Ñ£¨2£©ÖеÄʽ×Ó´úÈë¿ÉÇótµÄÖµ£»
£¨4£©Èçͼ2£¬Ö¤Ã÷¡÷MQP¡×¡÷PFQ£¬ÁбÈÀýʽ¿ÉÇóµÃ£ºPQ2=PM¡ÁFQ£¬Óɹ´¹É¶¨ÀíÏà½áºÏµÃ£ºPF2+FQ2=PM¡ÁFQ£¬´úÈëÁз½³Ì¿ÉµÃ½áÂÛ£®
½â´ð ½â£º£¨1£©ÔÚRt¡÷ABCÖУ¬Óɹ´¹É¶¨ÀíµÃ£¬
AC=$\sqrt{B{C}^{2}-A{B}^{2}}$=4£¬
ÓÉÆ½ÒÆÐÔÖʿɵÃMN¡ÎAB£»
¡ßPQ¡ÎMN£¬
¡àPQ¡ÎAB£¬
¡à$\frac{CP}{CA}$=$\frac{CQ}{CB}$£¬¼´$\frac{4-t}{4}$=$\frac{t}{5}$£¬![]()
½âµÃ£¬t=$\frac{20}{9}$£»
£¨2£©Èçͼ2£¬×÷PF¡ÍBCÓÚµãF£¬AE¡ÍBCÓÚµãE£¬
ÓÉS¡÷ABC=$\frac{1}{2}$AB¡ÁAC=$\frac{1}{2}$AE¡ÁBC¿ÉµÃ£¬$\frac{1}{2}$¡Á3¡Á4=$\frac{1}{2}$¡Á5AE£¬
¡àAE=$\frac{12}{5}$£¬
Óɹ´¹É¶¨ÀíµÃ£ºCE=$\sqrt{A{C}^{2}-A{E}^{2}}$=$\frac{16}{5}$£¬
¡ßPF¡ÍBC£¬AE¡ÍBC£¬
¡àAE¡ÎPF£¬
¡à¡÷CPF¡×¡÷CAE£¬
¡à$\frac{CP}{CA}$=$\frac{CF}{CE}$=$\frac{PF}{AE}$£¬¼´$\frac{4-t}{4}$=$\frac{CF}{\frac{16}{5}}$=$\frac{PF}{\frac{12}{5}}$£¬
½âµÃ£¬CF=$\frac{16-4t}{5}$£¬PF=$\frac{12-3t}{5}$£¬
¡ßPM¡ÎBC£¬ËùÒÔMµ½BCµÄ¾àÀëh=PF=$\frac{12-3t}{5}$£¬
¡à¡÷QCMÊÇÃæ»ýy=$\frac{1}{2}$CQ¡Áh=$\frac{1}{2}$¡Át¡Á$\frac{12-3t}{5}$=-$\frac{3}{10}$t2+6t£»
£¨3£©¡ßPM¡ÎBC£¬
¡àS¡÷PQC=S¡÷MQC£¬
¡ßS¡÷QMC£ºSËıßÐÎABQP=1£º4£¬
¡àS¡÷MQC£ºS¡÷ABC=1£º5£¬
Ôò5£¨-$\frac{3}{10}$t2+6t£©=$\frac{1}{2}$¡Á4¡Á3£¬
t2-4t+4=0£¬
½âµÃ£ºt1=t2=2£¬
¡àµ±t=2ʱ£¬S¡÷QMC£ºSËıßÐÎABQP=1£º4£»
£¨4£©Èçͼ2£¬¡ßPQ¡ÍMQ£¬
¡à¡ÏMQP=¡ÏPFQ=90¡ã£¬
¡ßMP¡ÎBC£¬
¡à¡ÏMPQ=¡ÏPQF£¬
¡à¡÷MQP¡×¡÷PFQ£¬
¡à$\frac{PM}{PQ}$=$\frac{PQ}{FQ}$£¬
¡àPQ2=PM¡ÁFQ£¬
¼´PF2+FQ2=PM¡ÁFQ£¬
ÓÉCF=$\frac{16-4t}{5}$£¬µÃFQ=CF-CQ=$\frac{16-9t}{5}$£¬
Ôò£¨$\frac{12-3t}{5}$£©2+£¨$\frac{16-9t}{5}$£©2=5¡Á$\frac{16-9t}{5}$£¬
ÕûÀíµÃ2t2-3t=0£¬
½âµÃt1=0£¨Éᣩ£¬t2=$\frac{3}{2}$£¬
´ð£ºµ±t=$\frac{3}{2}$ʱ£¬PQ¡ÍMQ£®
µãÆÀ ±¾ÌâÊÇËıßÐεÄ×ÛºÏÌ⣬¿¼²éÁËÆ½ÐÐËıßÐΡ¢Æ½ÒÆ¡¢¹´¹É¶¨Àí¡¢ÏàËÆÈý½ÇÐεÄÐÔÖʺÍÅж¨£¬¸ù¾ÝÆ½ÒÆµÄÌØµã£¬È·¶¨µÈÁ¿¹ØÏµÊǹؼü£¬¿ÉÒÔÀûÓÃÏàËÆÁеÈÁ¿¹ØÏµ£¬Ò²¿ÉÒÔÀûÓÃÒÑÖªÃæ»ýµÄ±ÈÁеÈÁ¿¹ØÏµ£¬½â·½³Ì¿ÉÒÔ½â¾öÎÊÌ⣮
| A£® | 1 | B£® | $\sqrt{2}$ | C£® | $\sqrt{3}$ | D£® | $\sqrt{5}$ |
| A£® | HL | B£® | SAS | C£® | ASA | D£® | AAS |
| A£® | £¨-3£¬4£© | B£® | £¨-3.5£¬4£© | C£® | £¨-3.7£¬4£© | D£® | £¨-4£¬4£© |
| A£® | -5-£¨+5£©=-10 | B£® | -3+2=-1 | C£® | £¨-3£©¡Á£¨+5£©=-15 | D£® | |-2|+£¨-4£©=2 |