题目内容
1.某商场销售A、B两种商品,这两种商品的进价和售价如表所示,该商场计划购进两种商品若干,共需66万元,全部销售后可获利润9万元.| A | B | |
| 进价(万元/件) | 1.5 | 1.2 |
| 售价(万元/件) | 1.65 | 1.4 |
(2)通过市场调研,该商场决定在原计划的基础上,减少A种商品的购进数量,增加B种商品的购进数量,已知B种商品增加的数量是A种商品减少的数量的1.5倍.若用于购进这两种商品的总资金不超过69万.问A种商品购进数至多减少多少件?
分析 (1)首先设该商场计划购进A,B两种商品的教学设备分别为x套,y套,根据题意即可列方程组$\left\{\begin{array}{l}{1.5x+1.2y=66}\\{0.15x+0.2y=9}\end{array}\right.$,解此方程组即可求得答案;
(2)首先设A种商品购进数量减少a套,则B种商品购进数量增加1.5a套,根据题意即可列不等式1.5(20-a)+1.2(30+1.5a)≤69,解此不等式组即可求得答案.
解答 解:(1)设该商场计划购进A,B两种商品分别为x套,y套,
$\left\{\begin{array}{l}{1.5x+1.2y=66}\\{0.15x+0.2y=9}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=20}\\{y=30}\end{array}\right.$,
答:该商场计划购进A,B两种品牌的教学设备分别为20套,30套;
(2)设A种商品购进数量减少a套,则B种商品购进数量增加1.5a套,
1.5(20-a)+1.2(30+1.5a)≤69,
解得:a≤10,
答:A种商品购进数量至多减少10套.
点评 此题考查了一元一次不等式与二元一次方程组的应用.注意根据题意找到等量关系是关键.
练习册系列答案
相关题目
11.阅读下面材料,并解答其后的问题:
定义:两组领边分别相等的四边形叫做筝形.
如图1,四边形ABCD中,若AD=AB,CD=CB,则四边形ABCD是筝形.
类比研究:
我们在学完平行四边形后,知道可以从对称性、边、角和对角线四个角度对平行四边形的性质进行研究,请根据示例图形,完成下表:
(1)表格中①、②分别填写的内容是:
①轴对称图形;
②一条对角线垂直平分另一条对角线.
(2)演绎论证:证明筝形有关对角线的性质.
已知:在筝形ABCD中,AD=AB,BC=DC,AC、BD是对角线.
求证:AC垂直平分BD.
证明:
(3)运用:如图3,已知筝形ABCD中,AD=AB=4,CD=CB,∠A=90°,∠C=60°,求筝形ABCD的面积
定义:两组领边分别相等的四边形叫做筝形.
如图1,四边形ABCD中,若AD=AB,CD=CB,则四边形ABCD是筝形.
类比研究:
我们在学完平行四边形后,知道可以从对称性、边、角和对角线四个角度对平行四边形的性质进行研究,请根据示例图形,完成下表:
| 四边形 | 示例图形 | 对称性 | 边 | 角 | 对角线 |
| 平行 四边形 | 两组对边分别平行,两组对边分别相等 | 两组对边分别平行,两组对边分别相等. | 两组对角 分别相等. | 对角线互相平分. | |
| 等腰 梯形 | ①轴对称图形 | 两组邻边分别相等 | 有一组对角相等 | ②一条对角线垂直平分另一条对角线 |
①轴对称图形;
②一条对角线垂直平分另一条对角线.
(2)演绎论证:证明筝形有关对角线的性质.
已知:在筝形ABCD中,AD=AB,BC=DC,AC、BD是对角线.
求证:AC垂直平分BD.
证明:
(3)运用:如图3,已知筝形ABCD中,AD=AB=4,CD=CB,∠A=90°,∠C=60°,求筝形ABCD的面积