题目内容
15.函数y=$\frac{k}{x}$的图象经过点(-$\frac{1}{2}$,2),则函数y=kx-2的图象不经过第几象限( )| A. | 一 | B. | 二 | C. | 三 | D. | 四 |
分析 首先把点(-$\frac{1}{2}$,2)代入y=$\frac{k}{x}$中可得k的值,然后再确定y=kx-2的图象不经过第几象限.
解答 解:∵函数y=$\frac{k}{x}$的图象经过点(-$\frac{1}{2}$,2),
∴2=$\frac{k}{-\frac{1}{2}}$,
解得:k=-1,
∴函数y=kx-2=-x-2,
∴图象经过第二三四象限,不经过第一象限.
故选:A.
点评 此题主要考查了一次函数图象与系数的关系,关键是掌握y=kx+b中,
①k>0,b>0?y=kx+b的图象在一、二、三象限;
②k>0,b<0?y=kx+b的图象在一、三、四象限;
③k<0,b>0?y=kx+b的图象在一、二、四象限;
④k<0,b<0?y=kx+b的图象在二、三、四象限.
练习册系列答案
相关题目
5.
提出问题:当x>0时如何求函数y=x+$\frac{1}{x}$的最大值或最小值?
分析问题:前面我们刚刚学过二次函数的相关知识,知道求二次函数的最值时,我们可以利用它的图象进行猜想最值,或利用配方可以求出它的最值.
例如我们求函数y=x-2$\sqrt{x}$(x>0)的最值时,就可以仿照二次函数利用配方求最值的方法解决问题;y=x-2$\sqrt{x}$=($\sqrt{x}$)2-2$\sqrt{x}$-2$\sqrt{x}$+1-1=($\sqrt{x}$-1)2-1即当x=1时,y有最小值为-1
解决问题
借鉴我们已有的研究函数的经验,探索函数y=x+$\frac{1}{x}$(x>0)的最大(小)值.
(1)实践操作:填写下表,并用描点法画出函数y=x+$\frac{1}{x}$(x>0)的图象:
(2)观察猜想:观察该函数的图象,猜想
当x=1时,函数y=x+$\frac{1}{x}$(x>0)有最小值(填“大”或“小”),是2.
(3)推理论证:利用上述例题,请你尝试通过配方法求函数y=x+$\frac{1}{x}$(x>0)的最大(小)值,以证明你的猜想.知识能力运用:直接写出函数y=-2x-$\frac{1}{2x}$(x>0)当x=$\frac{1}{2}$时,该函数有最大值(填“大”或“小”),是-2.
分析问题:前面我们刚刚学过二次函数的相关知识,知道求二次函数的最值时,我们可以利用它的图象进行猜想最值,或利用配方可以求出它的最值.
例如我们求函数y=x-2$\sqrt{x}$(x>0)的最值时,就可以仿照二次函数利用配方求最值的方法解决问题;y=x-2$\sqrt{x}$=($\sqrt{x}$)2-2$\sqrt{x}$-2$\sqrt{x}$+1-1=($\sqrt{x}$-1)2-1即当x=1时,y有最小值为-1
解决问题
借鉴我们已有的研究函数的经验,探索函数y=x+$\frac{1}{x}$(x>0)的最大(小)值.
(1)实践操作:填写下表,并用描点法画出函数y=x+$\frac{1}{x}$(x>0)的图象:
| x | … | $\frac{1}{4}$ | $\frac{1}{3}$ | $\frac{1}{2}$ | 1 | 2 | 3 | 4 | … |
| y | … | … |
当x=1时,函数y=x+$\frac{1}{x}$(x>0)有最小值(填“大”或“小”),是2.
(3)推理论证:利用上述例题,请你尝试通过配方法求函数y=x+$\frac{1}{x}$(x>0)的最大(小)值,以证明你的猜想.知识能力运用:直接写出函数y=-2x-$\frac{1}{2x}$(x>0)当x=$\frac{1}{2}$时,该函数有最大值(填“大”或“小”),是-2.