题目内容

18.如图,⊙O的直径AB垂直弦CD于E,过点C的切线CF交AB延长线于F,连接CO并延长交AD于G,且CG⊥AD.求证:△CEF≌△DEA.

分析 由CF是⊙O的切线,易得CG⊥CF,证得CF∥AD,得出∠ECF=∠EDA,∠F=∠A,根据垂径定理得出CE=DE,然后根据AAS即可证得△CEF≌△DEA.

解答 证明:∵CF是⊙O的切线
∴∠OCF=90°,
∴CG⊥CF,
又∵CG⊥AD,
∴CF∥AD,
∴∠ECF=∠EDA,∠F=∠A,
∵直径AB垂直弦CD,
∴CE=DE,
在△CEF和△DEA中,
$\left\{\begin{array}{l}{∠ECF=∠EDA}\\{∠F=∠A}\\{CE=DE}\end{array}\right.$,
∴△CEF≌△DEA(ASA).

点评 此题考查了切线的性质、平行线的判定和性质、垂径定理以及全等三角形的判定.熟练掌握性质定理是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网