ÌâÄ¿ÄÚÈÝ
6£®£¨1£©´ÓÔ˶¯¿ªÊ¼£¬µ±tÈ¡ºÎֵʱ£¬PQ¡ÎCD£¿
£¨2£©´ÓÔ˶¯¿ªÊ¼£¬µ±tÈ¡ºÎֵʱ£¬¡÷PQCΪֱ½ÇÈý½ÇÐΣ¿
·ÖÎö £¨1£©ÒÑÖªAD¡ÎBC£¬Ìí¼ÓPD=CQ¼´¿ÉÅжÏÒÔPQDCΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ®
£¨2£©µãP´¦¿ÉÄÜΪֱ½Ç£¬µãQ´¦Ò²¿ÉÄÜÊÇÖ±½Ç£¬¶øºóÇó½â¼´¿É£®
½â´ð ½â£º£¨1£©µ±PQ¡ÎCDʱ£¬ËıßÐÎPDCBÊÇÆ½ÐÐËıßÐΣ¬
´ËʱPD=QC£¬
¡à12-2t=t£¬
¡àt=4£®
¡àµ±t=4ʱ£¬ËıßÐÎPQDCÊÇÆ½ÐÐËıßÐΣ®
£¨2£©¹ýDµã£¬DF¡ÍBCÓÚF£¬
¡àDF=AB=8£®
FC=BC-AD=18-12=6£¬CD=10£¬
¢Ùµ±PQ¡ÍBC£¬![]()
ÔòBQ+CQ=18£®¼´£º2t+t=18£¬
¡àt=6£»
¢Úµ±QP¡ÍPC£¬´ËʱPÒ»¶¨ÔÚDCÉÏ£¬
CP1=10+12-2t=22-2t£¬CQ2=t£¬
Ò×Öª£¬¡÷CDF¡×¡÷CQ2P1£¬
¡à$\frac{22-2t}{6}=\frac{t}{10}$£¬
½âµÃ£ºt=$\frac{110}{13}$£¬
¢ÛÇéÐΣºµ±PC¡ÍBCʱ£¬Òò¡ÏDCB£¼90¡ã£¬´ËÖÖÇéÐβ»´æÔÚ£®
¡àµ±t=6»ò$\frac{110}{13}$ʱ£¬¡÷PQCÊÇÖ±½ÇÈý½ÇÐΣ®
µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁËÒ»×é¶Ô±ßƽÐÐÇÒÏàµÈµÄËıßÐÎÊÇÆ½ÐÐËıßÐÎÒÔ¼°Ô²ÓëÔ²µÄλÖùØÏµµÈ֪ʶ£¬×¢Òâ·ÖÇé¿öÌÖÂۺͳ£¼û֪ʶµÄÓ¦Óã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
16£®
Èçͼ£¬ÒÑÖªÔÚÕý·½ÐÎABCDÖУ¬µãE¡¢F·Ö±ðÔÚBC¡¢CDÉÏ£¬¡÷AEFÊǵȱßÈý½ÇÐΣ¬Á¬½ÓAC½»EFÓÚG£¬¸ø³öÏÂÁнáÂÛ£º
¢ÙBE=DF£»¢Ú¡ÏDAF=15¡ã£»¢ÛAC´¹Ö±Æ½·ÖEF£»¢ÜBE+DF=EF£®
ÆäÖнáÂÛÕýÈ·µÄ¹²ÓУ¨¡¡¡¡£©
¢ÙBE=DF£»¢Ú¡ÏDAF=15¡ã£»¢ÛAC´¹Ö±Æ½·ÖEF£»¢ÜBE+DF=EF£®
ÆäÖнáÂÛÕýÈ·µÄ¹²ÓУ¨¡¡¡¡£©
| A£® | 1¸ö | B£® | 2¸ö | C£® | 3¸ö | D£® | 4¸ö |
17£®ÏÂÁиùʽÖУ¬ÊÇ×î¼ò¶þ´Î¸ùʽµÄΪ£¨¡¡¡¡£©
| A£® | $\sqrt{8a}$ | B£® | $\sqrt{{a}^{2}+{b}^{2}}$ | C£® | $\sqrt{0.1x}$ | D£® | $\sqrt{{a}^{5}}$ |
11£®ÖйúÁù¸ö³ÇÊÐijÈÕµÄÎÛȾָÊýÈçÏÂ±í£ºÔÚÕâ×éÊý¾ÝÖеÄÖÐλÊýÊÇ£¨¡¡¡¡£©
| ³ÇÊÐ | ±±¾© | ºÏ·Ê | ÄϾ© | ¹þ¶û±õ | ³É¶¼ | Ö£ÖÝ |
| ÎÛȾָÊý | 342 | 163 | 165 | 45 | 227 | 163 |
| A£® | 105 | B£® | 163 | C£® | 164 | D£® | 165 |
18£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | ͬλ½ÇÏàµÈ | B£® | ¶Ô¶¥½ÇÏàµÈ | ||
| C£® | ÏàµÈµÄ½ÇÒ»¶¨ÊǶԶ¥½Ç | D£® | ½ÇµÄ´óСÓë±ßµÄ³¤¶ÌÓÐ¹Ø |