题目内容
5.| A. | 90° | B. | 110° | C. | 120° | D. | 140° |
分析 连接AD,根据线段的垂直平分线性质得出BD=AD,DC=AD,推出∠B=∠BAD,∠C=∠CAD,求出∠BAC=∠BAD+∠CAD=∠B+∠C=130°,即可求出答案.
解答 解:![]()
连接AD,
∵点D在AB、AC的垂直平分线上,
∴BD=AD,DC=AD,
∴∠B=∠BAD,∠C=∠CAD,
∵∠BAC=110°=∠BAD+∠CAD,
∴∠B+∠C=110°,
∴∠BDC=360°-(∠B+∠C)-∠BAC=360°-110°-110°=140°,
故选D.
点评 本题考查了四边形的内角和定理,等腰三角形的性质和判定,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.
练习册系列答案
相关题目
16.下列剪纸图形中,既是轴对称图形又是中心对称图形的有( )

| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
20.
如图,直线l1过原点,直线l2解析式为y=-$\frac{\sqrt{3}}{3}$x+2,且直线l1和l2互相垂直,那么直线l1解析式为( )
| A. | y=$\frac{1}{3}$x | B. | y=$\frac{\sqrt{3}}{3}$x | C. | y=$\frac{\sqrt{3}}{2}$x | D. | y=$\sqrt{3}$x |
10.关于x的一元二次方程x2+(2m+1)x+m2-1=0有两个不相等的实数根,则m的取值范围是( )
| A. | m≥-$\frac{5}{4}$ | B. | m≤-$\frac{5}{4}$ | C. | m<-$\frac{5}{4}$ | D. | m>-$\frac{5}{4}$ |
17.
如图,正方形ABCD中,BP=PQ=QC,AQ与DP交于R,若正方形ABCD的面积为100cm2,则△PQR的面积为 ( )cm2.
| A. | 25 | B. | $\frac{50}{3}$ | C. | $\frac{25}{12}$ | D. | $\frac{25}{6}$ |