题目内容

5.如图,四边形ABCD,∠A=110°,若点D在AB、AC的垂直平分线上,则∠BDC为(  )
A.90°B.110°C.120°D.140°

分析 连接AD,根据线段的垂直平分线性质得出BD=AD,DC=AD,推出∠B=∠BAD,∠C=∠CAD,求出∠BAC=∠BAD+∠CAD=∠B+∠C=130°,即可求出答案.

解答 解:
连接AD,
∵点D在AB、AC的垂直平分线上,
∴BD=AD,DC=AD,
∴∠B=∠BAD,∠C=∠CAD,
∵∠BAC=110°=∠BAD+∠CAD,
∴∠B+∠C=110°,
∴∠BDC=360°-(∠B+∠C)-∠BAC=360°-110°-110°=140°,
故选D.

点评 本题考查了四边形的内角和定理,等腰三角形的性质和判定,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网