题目内容
4.分析 先根据三角形内角和等于180°求出∠ABP+∠ACQ=75°,再根据线段垂直平分线的性质∠PAB=∠ABP,∠QAC=∠ACQ,所以∠PAB+∠QAC=75°,便不难求出∠PAQ的度数为30°.
解答 解:∵∠BAC=105°,
∴∠ABP+∠ACQ=180°-105°=75°,
∵MP、NQ分别垂直平分AB和AC,
∴PB=PA,QC=QA.
∴∠PAB=∠ABP,∠QAC=∠ACQ,
∴∠PAB+∠QAC=∠ABP+∠ACQ=75°,
∴∠PAQ=105°-75°=30°.
点评 本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上的点到线段两端的距离相等是解答此题的关键.
练习册系列答案
相关题目
17.
如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,且AB=10cm,则△BED的周长为( )
| A. | 5 cm | B. | 10 cm | C. | 15 cm | D. | 20 cm |