ÌâÄ¿ÄÚÈÝ
18£®ÔÚÖ±½Ç×ø±êϵÖУ¬ÎÒÃDz»·Á½«ºá×ø±ê£¬×Ý×ø±ê¾ùΪÕûÊýµÄµã³ÆÖ®Îª¡°Öйú½á¡±£®£¨1£©Çóº¯Êýy=$\sqrt{3}$x+2µÄͼÏóÉÏËùÓС°Öйú½á¡±µÄ×ø±ê£»
£¨2£©Èôº¯Êýy=$\frac{k}{x}$£¨k¡Ù0£¬kΪ³£Êý£©µÄͼÏóÉÏÓÐÇÒÖ»ÓÐÁ½¸ö¡°Öйú½á¡±£¬ÊÔÇó³ö³£ÊýkµÄÖµÓëÏàÓ¦¡°Öйú½á¡±µÄ×ø±ê£»
£¨3£©Èô¶þ´Îº¯Êýy=£¨k2-3k+2£©x2+£¨2k2-4k+1£©x+k2-k£¨kΪ³£Êý£©µÄͼÏóÓëxÖáÏཻµÃµ½Á½¸ö²»Í¬µÄ¡°Öйú½á¡±£¬ÊÔÎʸú¯ÊýµÄͼÏóÓëxÖáËùΧ³ÉµÄÆ½ÃæÍ¼ÐÎÖУ¨º¬±ß½ç£©£¬Ò»¹²°üº¬ÓжàÉÙ¸ö¡°Öйú½á¡±£¿
·ÖÎö £¨1£©ÒòΪxÊÇÕûÊý£¬x¡Ù0ʱ£¬$\sqrt{3}$xÊÇÒ»¸öÎÞÀíÊý£¬ËùÒÔx¡Ù0ʱ£¬$\sqrt{3}$x+2²»ÊÇÕûÊý£¬ËùÒÔx=0£¬y=2£¬¾Ý´ËÇó³öº¯Êýy=$\sqrt{3}$x+2µÄͼÏóÉÏËùÓС°Öйú½á¡±µÄ×ø±ê¼´¿É£®
£¨2£©Ê×ÏÈÅжϳöµ±k=1ʱ£¬º¯Êýy=$\frac{k}{x}$£¨k¡Ù0£¬kΪ³£Êý£©µÄͼÏóÉÏÓÐÇÒÖ»ÓÐÁ½¸ö¡°Öйú½á¡±£º£¨1£¬1£©¡¢£¨-1¡¢-1£©£»È»ºóÅжϳöµ±k¡Ù1ʱ£¬º¯Êýy=$\frac{k}{x}$£¨k¡Ù0£¬kΪ³£Êý£©µÄͼÏóÉÏ×îÉÙÓÐ4¸ö¡°Öйú½á¡±£¬¾Ý´ËÇó³ö³£ÊýkµÄÖµÓëÏàÓ¦¡°Öйú½á¡±µÄ×ø±ê¼´¿É£®
£¨3£©Ê×ÏÈÁk2-3k+2£©x2+£¨2k2-4k+1£©x+k2-k=0£¬Ôò[£¨k-1£©x+k][£¨k-2£©x+£¨k-1£©]=0£¬Çó³öx1¡¢x2µÄÖµÊǶàÉÙ£»È»ºó¸ù¾Ýx1¡¢x2µÄÖµÊÇÕûÊý£¬Çó³ökµÄÖµÊǶàÉÙ£»×îºó¸ù¾Ýºá×ø±ê£¬×Ý×ø±ê¾ùΪÕûÊýµÄµã³ÆÖ®Îª¡°Öйú½á¡±£¬Åжϳö¸Ãº¯ÊýµÄͼÏóÓëxÖáËùΧ³ÉµÄÆ½ÃæÍ¼ÐÎÖУ¨º¬±ß½ç£©£¬Ò»¹²°üº¬ÓжàÉÙ¸ö¡°Öйú½á¡±¼´¿É£®
½â´ð ½â£º£¨1£©¡ßxÊÇÕûÊý£¬x¡Ù0ʱ£¬$\sqrt{3}$xÊÇÒ»¸öÎÞÀíÊý£¬
¡àx¡Ù0ʱ£¬$\sqrt{3}$x+2²»ÊÇÕûÊý£¬
¡àx=0£¬y=2£¬
¼´º¯Êýy=$\sqrt{3}$x+2µÄͼÏóÉÏ¡°Öйú½á¡±µÄ×ø±êÊÇ£¨0£¬2£©£®
£¨2£©¢Ùµ±k=1ʱ£¬º¯Êýy=$\frac{k}{x}$£¨k¡Ù0£¬kΪ³£Êý£©µÄͼÏóÉÏÓÐÇÒÖ»ÓÐÁ½¸ö¡°Öйú½á¡±£º
£¨1£¬1£©¡¢£¨-1¡¢-1£©£»
¢Úµ±k=-1ʱ£¬º¯Êýy=$\frac{k}{x}$£¨k¡Ù0£¬kΪ³£Êý£©µÄͼÏóÉÏÓÐÇÒÖ»ÓÐÁ½¸ö¡°Öйú½á¡±£º
£¨1£¬-1£©¡¢£¨-1£¬1£©£®
¢Ûµ±k¡Ù¡À1ʱ£¬º¯Êýy=$\frac{k}{x}$£¨k¡Ù0£¬kΪ³£Êý£©µÄͼÏóÉÏ×îÉÙÓÐ4¸ö¡°Öйú½á¡±£º
£¨1£¬k£©¡¢£¨-1£¬-k£©¡¢£¨k£¬1£©¡¢£¨-k£¬-1£©£¬ÕâÓ뺯Êýy=$\frac{k}{x}$£¨k¡Ù0£¬kΪ³£Êý£©µÄͼÏóÉÏÓÐÇÒÖ»ÓÐÁ½¸ö¡°Öйú½á¡±Ã¬¶Ü£¬
×ÛÉϿɵã¬k=1ʱ£¬º¯Êýy=$\frac{k}{x}$£¨k¡Ù0£¬kΪ³£Êý£©µÄͼÏóÉÏÓÐÇÒÖ»ÓÐÁ½¸ö¡°Öйú½á¡±£º£¨1£¬1£©¡¢£¨-1¡¢-1£©£»
k=-1ʱ£¬º¯Êýy=$\frac{k}{x}$£¨k¡Ù0£¬kΪ³£Êý£©µÄͼÏóÉÏÓÐÇÒÖ»ÓÐÁ½¸ö¡°Öйú½á¡±£º£¨1£¬-1£©¡¢£¨-1¡¢1£©£®
£¨3£©Ák2-3k+2£©x2+£¨2k2-4k+1£©x+k2-k=0£¬
Ôò[£¨k-1£©x+k][£¨k-2£©x+£¨k-1£©]=0£¬
¡à$\left\{\begin{array}{l}{{x}_{1}=\frac{k}{1-k}}\\{{x}_{2}=\frac{k-1}{2-k}}\end{array}\right.$
¡àk=$\frac{{x}_{1}}{{x}_{1}+1}=\frac{{2x}_{2}+1}{{x}_{2}+1}$£¬
ÕûÀí£¬¿ÉµÃ
x1x2+2x2+1=0£¬
¡àx2£¨x1+2£©=-1£¬
¡ßx1¡¢x2¶¼ÊÇÕûÊý£¬
¡à$\left\{\begin{array}{l}{{x}_{2}=1}\\{{x}_{1}+2=-1}\end{array}\right.$»ò$\left\{\begin{array}{l}{{x}_{2}=-1}\\{{x}_{1}+2=1}\end{array}\right.$
¡à$\left\{\begin{array}{l}{{x}_{1}=-3}\\{{x}_{2}=1}\end{array}\right.$»ò$\left\{\begin{array}{l}{{x}_{1}=-1}\\{{x}_{2}=-1}\end{array}\right.$
¢Ùµ±$\left\{\begin{array}{l}{{x}_{1}=-3}\\{{x}_{2}=1}\end{array}\right.$ʱ£¬
¡ß$\frac{k-1}{2-k}=1$£¬
¡àk=$\frac{3}{2}$£»
¢Úµ±$\left\{\begin{array}{l}{{x}_{1}=-1}\\{{x}_{2}=-1}\end{array}\right.$ʱ£¬
¡ß$\frac{k}{1-k}=-1$£¬
¡àk=k-1£¬Î޽⣻
×ÛÉÏ£¬¿ÉµÃ
k=$\frac{3}{2}$£¬x1=-3£¬x2=1£¬
y=£¨k2-3k+2£©x2+£¨2k2-4k+1£©x+k2-k
=[${£¨\frac{3}{2}£©}^{\;}$2-3¡Á$\frac{3}{2}$+2]x2+[2¡Á£¨$\frac{3}{2}$£©2-4¡Á$\frac{3}{2}$+1]x+£¨$\frac{3}{2}$£©2-$\frac{3}{2}$
=-$\frac{1}{4}$x2-$\frac{1}{2}$x$+\frac{3}{4}$
¢Ùµ±x=-2ʱ£¬
y=-$\frac{1}{4}$x2-$\frac{1}{2}$x$+\frac{3}{4}$
=$-\frac{1}{4}$¡Á£¨-2£©2$-\frac{1}{2}$¡Á£¨-2£©+$\frac{3}{4}$
=$\frac{3}{4}$
¢Úµ±x=-1ʱ£¬
y=-$\frac{1}{4}$x2-$\frac{1}{2}$x$+\frac{3}{4}$
=$-\frac{1}{4}$¡Á£¨-1£©2$-\frac{1}{2}$¡Á£¨-1£©+$\frac{3}{4}$
=1
¢Ûµ±x=0ʱ£¬y=$\frac{3}{4}$£¬
ÁíÍ⣬¸Ãº¯ÊýµÄͼÏóÓëxÖáËùΧ³ÉµÄÆ½ÃæÍ¼ÐÎÖÐxÖáÉϵġ°Öйú½á¡±ÓÐ3¸ö£º
£¨-2£¬0£©¡¢£¨-1¡¢0£©¡¢£¨0£¬0£©£®
×ÛÉÏ£¬¿ÉµÃ
Èô¶þ´Îº¯Êýy=£¨k2-3k+2£©x2+£¨2k2-4k+1£©x+k2-k£¨kΪ³£Êý£©µÄͼÏóÓëxÖáÏཻµÃµ½Á½¸ö²»Í¬µÄ¡°Öйú½á¡±£¬
¸Ãº¯ÊýµÄͼÏóÓëxÖáËùΧ³ÉµÄÆ½ÃæÍ¼ÐÎÖУ¨º¬±ß½ç£©£¬Ò»¹²°üº¬ÓÐ6¸ö¡°Öйú½á¡±£º£¨-3£¬0£©¡¢£¨-2£¬0£©¡¢£¨-1£¬0£©£¨-1£¬1£©¡¢£¨0£¬0£©¡¢£¨1£¬0£©£®
µãÆÀ £¨1£©´ËÌâÖ÷Òª¿¼²éÁË·´±ÈÀýº¯ÊýÎÊÌ⣬¿¼²éÁË·ÖÀàÌÖÂÛ˼ÏëµÄÓ¦Óã¬ÒªÊìÁ·ÕÆÎÕ·´±ÈÀýº¯ÊýµÄͼÏóºÍÐÔÖÊ£®
£¨2£©´ËÌ⻹¿¼²éÁ˶Ôж¨Òå¡°Öйú½á¡±µÄÀí½âºÍÕÆÎÕ£¬½â´ð´ËÌâµÄ¹Ø¼üÊÇÒªÃ÷È·£ººá×ø±ê£¬×Ý×ø±ê¾ùΪÕûÊýµÄµã³ÆÖ®Îª¡°Öйú½á¡±£®