题目内容

8.解下列方程组:
(1)$\left\{\begin{array}{l}{2x+3y=7}\\{x=-2y+3}\end{array}\right.$;                       
(2)$\left\{\begin{array}{l}{3x+y=22}\\{4(x+y)-5(x-y)=2}\end{array}\right.$.

分析 (1)方程组利用代入消元法求出解即可;
(2)方程组利用加减消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{2x+3y=7①}\\{x=-2y+3②}\end{array}\right.$,
把②代入①得:-4y+6+3y=7,即y=-1,
把y=-1代入②得:x=5,
则方程组的解为$\left\{\begin{array}{l}{x=5}\\{y=-1}\end{array}\right.$;
(2)方程组整理得:$\left\{\begin{array}{l}{3x+y=22①}\\{-x+9y=2②}\end{array}\right.$,
①+②×3得:28y=28,即y=1,
把y=1代入②得:x=7,
则方程组的解为$\left\{\begin{array}{l}{x=7}\\{y=1}\end{array}\right.$.

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网