题目内容

8.观察下列各式:$\sqrt{3+2\sqrt{2}}$=$\sqrt{2+2\sqrt{2}+1}$=$\sqrt{(\sqrt{2}+1)^{2}}$=$\sqrt{2}$+1,$\sqrt{7+2\sqrt{10}}$=$\sqrt{5+2\sqrt{10}+2}$=$\sqrt{(\sqrt{5}+\sqrt{2})^{2}}$=$\sqrt{5}$$+\sqrt{2}$,…由上述规律可知$\sqrt{8+2\sqrt{15}}$=$\sqrt{5}$+$\sqrt{3}$.

分析 直接利用完全平方公式进而化简求出答案.

解答 解:$\sqrt{8+2\sqrt{15}}$=$\sqrt{(\sqrt{5}+\sqrt{3})^{2}}$=$\sqrt{5}$+$\sqrt{3}$.
故答案为:$\sqrt{5}$+$\sqrt{3}$.

点评 此题主要考查了二次根式的性质与化简,正确掌握完全平方公式是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网