ÌâÄ¿ÄÚÈÝ
16£®2014ÄêµÄÖп¼¼´½«µ½À´£¬×øÂäÓÚʯ¼ÒׯµÄºÓ±±µç´ó¸ßְѧԺ×éÖ¯ÕÐÉúÀÏʦ·Ö±ðµ½±£¶¨¡¢Õżҿڡ¢³ÐµÂ¡¢ºªµ¦¡¢ºâË®¡¢ÐĮ̈¡¢ÌÆÉ½Æß¸öµØÊнøÐÐÕÐÉú£¬¸ÃѧԱ°´¶¨¶î¹ºÂòÁËǰÍù¸÷µØµÄ³µÆ±£¬ÆäÖб£¶¨10ÕÅ£¬ÕżҿÚ17ÕÅ£¬³ÐµÂ13ÕÅ£¬ºªµ¦16ÕÅ£¬ºâË®10ÕÅ£¬ÌÆÉ½19ÕÅ£®£¨1£©ÈôÈ¥ÐĮ̈µÄ³µÆ±Õ¼È«²¿³µÆ±µÄ15%£¬ÇóÈ¥ÐĮ̈µÄ³µÆ±ÓжàÉÙÕÅ£¿
£¨2£©Èô¸ÃѧԺ²ÉÓÃËæ»ú³éÈ¡µÄ·½Ê½·¢³µÆ±£¬Ð¡ÕŵÚÒ»¸ö´ÓËùÓеijµÆ±ÖÐËæ»ú³éȡһÕÅ£¨ËùÓгµÆ±µÄÐÎ×´¡¢´óС¡¢ÖʵØÍêÈ«Ïàͬ£©£¬ÇóСÕų鵽ȥÍùÌÆÉ½µÄ³µÆ±µÄ¸ÅÂÊÊǶàÉÙ£¿
£¨3£©Èô¸ÃѧԺ´Ë´Î¹ºÂòµÄ³µÆ±ÖУ¬Ç°Íù±£¶¨µÄÊÇ21.5Ôª£¬Ç°ÍùÕżҿڵÄÊÇ64.5Ôª£¬Ç°Íù³ÐµÂµÄÊÇ75Ôª£¬Ç°Íùºªµ¦µÄÊÇ24.5Ôª£¬Ç°ÍùºâË®µÄ21.5Ôª£¬Ç°ÍùÌÆÉ½µÄÊÇ72Ôª£¬Ç°ÍùÐĮ̈µÄÊÇ16.5Ôª£¬Çó¸ÃѧԺ´Ë´Î¹ºÂòµÄ³µÆ±Æ½¾ùÿÕŶàÉÙÔª£¿
·ÖÎö £¨1£©¸ù¾ÝÌâÒâÈ¥ÐĮ̈µÄ³µÆ±Õ¼È«²¿³µÆ±µÄ15%Áгö·½³Ì½â´ð¼´¿É£»
£¨2£©¸ù¾Ý¸ÅÂʵĹ«Ê½½â´ð¼´¿É£»
£¨3£©¸ù¾Ýƽ¾ùÊýµÄÇ󷨽â´ð¼´¿É£®
½â´ð ½â£º£¨1£©ÉèÈ¥ÐĮ̈µÄ³µÆ±ÓÐxÕÅ£¬ÓÉÌâÒâµÃ
$\frac{x}{10+17+13+16+10+19+x}$=15%£¬
½âµÃx=15£¬
ÔòÈ¥ÐĮ̈µÄ³µÆ±ÓÐ15ÕÅ£®
£¨2£©Ò×µÃǰÍù¸÷µØµÄ×ÜÆ±ÊýΪ100ÕÅ£®
¡ßǰÍùÌÆÉ½µÄ³µÆ±ÓÐ19ÕÅ£¬
¡àСÕų鵽ȥÍùÌÆÉ½µÄ³µÆ±µÄ¸ÅÂÊÊÇ$\frac{19}{100}$£®
£¨3£©ÓÉÌâÒâµÃ$\frac{10¡Á21.5+17¡Á64.5+13¡Á75+16¡Á24.5+10¡Á21.5+19¡Á72+15¡Á16.5}{100}$=45.09£®
´ð£º¸ÃѧԺ´Ë´Î¹ºÂòµÄ³µÆ±Æ½¾ùÿÕÅ45.09Ôª£®
µãÆÀ ´ËÌ⿼²éÒ»ÔªÒ»´Î·½³ÌµÄÓ¦Ó㬹ؼüÊǸù¾ÝÈ¥ÐĮ̈µÄ³µÆ±Õ¼È«²¿³µÆ±µÄ15%Áгö·½³Ì£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
7£®7µÄƽ·½¸ùµÈÓÚ£¨¡¡¡¡£©
| A£® | $\sqrt{7}$ | B£® | 49 | C£® | ¡À49 | D£® | ¡À$\sqrt{7}$ |
4£®ÏÖ½«³¤Îª3cmµÄÏß¶ÎABÏòÓÒÆ½ÒÆ6cmµÃµ½Ïß¶ÎA¡äB¡ä£¬ÔòµãBÓëµãB¡äÖ®¼äµÄ¾àÀëΪ£¨¡¡¡¡£©
| A£® | 0cm | B£® | 3cm | C£® | 6cm | D£® | 9cm |
11£®
Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖÐÓÐÒ»¸öRt¡÷ABO£¬µãAµÄ×ø±êΪ£¨-2£¬0£©£¬µãBµÄ×ø±êΪ£¨0£¬1£©£¬½«¡÷ABOÈÆµãA°´Ë³Ê±Õë·½ÏòÐýת45¡ã£¬µãOµÄ¶ÔÓ¦µãDÇ¡ºÃÂäÔÚË«ÇúÏßy=$\frac{k}{x}$£¨x£¼0£©ÉÏ£¬ÔÚ´ËË«ÇúÏßÉÏ´æÔÚÒ»µãE£¬ÈôµãEµ½xÖáµÄ¾àÀëΪ2£¬ÔòµãEµÄ×ø±êΪ£¨¡¡¡¡£©
| A£® | £¨-2£¬1-$\sqrt{2}$£© | B£® | £¨-2£¬$\sqrt{2}-1$£© | C£® | £¨1-$\sqrt{2}$£¬-2£© | D£® | £¨$\sqrt{2}-1£¬-2$£© |
1£®ÏÂÁмÆËãÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | -2£¨a-b£©=-2a-2b | B£® | $\sqrt{5}-\sqrt{2}=\sqrt{3}$ | C£® | $\frac{-x+y}{x-y}=-1$ | D£® | £¨2a2b£©2=2a4b2 |
5£®
Èçͼ£¬µãA¡¢B¡¢CÔÚÒ»´Îº¯Êýy=-2x+mµÄͼÏóÉÏ£¬ËüÃǵĺá×ø±êÒÀ´ÎΪ-1£¬1£¬2£¬·Ö±ð¹ýÕâЩµã×÷xÖáÓëyÖáµÄ´¹Ïߣ¬ÔòͼÖÐÒõÓ°²¿·ÖµÄÃæ»ýÖ®ºÍÊÇ£¨¡¡¡¡£©
| A£® | 3£¨m-1£© | B£® | $\frac{3}{2}£¨m-2£©$ | C£® | 1 | D£® | 3 |
6£®
Èç±íÊÇÎÒ¹úij³ÇÊÐAÇøºÍBÇø2013Äê5ÔÂÖÁ12ÔµÄÔÂÆ½¾ùÉÌÆ·×¡·¿³É½»Êý£¨µ¥Î»£ºÌ×£©Í³¼Æ±í£º
£¨1£©ÔÚͼÖеÄÍø¸ñÖл³öÕÛÏßͳ¼ÆÍ¼±íʾAÇøºÍBÇø¸÷ÔÂ·ÝÆ½¾ùÉÌÆ·×¡·¿³É½»ÊýµÄ±ä»¯Çé¿ö£»
£¨2£©A£¬BÁ½ÇøÔÂÆ½¾ùÉÌÆ·×¡·¿³É½»Êý²î±ð×î´óµÄÔ·ÝÊÇ8Ô£¬ÔÂÆ½¾ùÉÌÆ·×¡·¿³É½»Êý²î±ð×îСµÄÔ·ÝÊÇ9Ô£®
| ÔÂ·Ý | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| AÇø | 320 | 315 | 325 | 310 | 315 | 305 | 340 | 315 |
| BÇø | 330 | 325 | 315 | 345 | 320 | 315 | 310 | 335 |
£¨2£©A£¬BÁ½ÇøÔÂÆ½¾ùÉÌÆ·×¡·¿³É½»Êý²î±ð×î´óµÄÔ·ÝÊÇ8Ô£¬ÔÂÆ½¾ùÉÌÆ·×¡·¿³É½»Êý²î±ð×îСµÄÔ·ÝÊÇ9Ô£®