ÌâÄ¿ÄÚÈÝ
9£®Èçͼ£¬Ö±½ÇÌÝÐÎOABC£¬OC±ß·ÅÔÚxÖáÉÏ£¬OA±ß·ÅÔÚyÖáÉÏ£¬OC=12£¬BC=8£¬¡ÏC=60¡ã£¬µãPÒÔ1¸öµ¥Î»µÄËÙ¶È´ÓOµã³ö·¢ÑØOCÔ˶¯£¬µãQÒÔÏàͬµÄËÙ¶È´ÓCµã³ö·¢£¬ÑØCB-BAÔ˶¯£¬µ±Ò»µãµ½´ïÖÕµãʱ£¬Á½µãÍ£Ö¹Ô˶¯£»£¨1£©Ð´³öBµãµÄ×ø±ê£»
£¨2£©Ð´³ö¡÷OPQµÄÃæ»ýSÓëʱ¼ätÖ®¼äµÄº¯Êý¹ØÏµÊ½£»
£¨3£©µ±QµãÔÚBC±ßÉÏÔ˶¯Ê±£¬ÊÇ·ñ´æÔÚtÖµ£¬Ê¹¡÷OPQΪµÈÑüÈý½ÇÐΣ¿ÈôÓУ¬Çó³ö´ËʱµÄtÖµ£»Èç¹ûûÓУ¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©¹ýBµã×÷×÷BH¡ÍOC£¬ÔÚRt¡÷BHCÖÐÒ×ÇóBH=4$\sqrt{3}$£¬CH=4£¬µÃµ½µãBµÄ×ø±ê£»
£¨2£©¸ù¾Ýµã²»Í¬Ê±¼ä¶ÎQµãµÄλÖ㬷Ö0£¼t£¼8ºÍ8¡Üt¡Ü12£¬·Ö±ð¼ÆËã¡÷OPQµÄÃæ»ýSÓëʱ¼ätÖ®¼äµÄº¯Êý¹ØÏµÊ½£»
£¨3£©·ÖÀàÌÖÂÛ£¬Óù´¹É¶¨Àí±íʾÏ߶Σ¬Áз½³ÌÇó½â£®
½â´ð ½â£º£¨1£©×÷BH¡ÍOC£¬´¹×ãΪH£¬ÔÚRt¡÷BHCÖУ¬
¡ßBC=8£¬¡ÏC=60¡ã£¬
¡àBH=4$\sqrt{3}$£¬CH=4£¬
¡ßOC=12£¬
¡àOH=8
¡àB£¨8£¬4$\sqrt{3}$£©£»
£¨2£©µ±0£¼t£¼8ʱ£¬×÷QM¡ÍOC£¬
ÔÚRt¡÷CQMÖУ¬
¡ß¡ÏC=60¡ã£¬
¡à¡ÏCQM=30¡ã£¬
¡àCM=$\frac{1}{2}$CQ=$\frac{t}{2}$£¬QM=$\frac{\sqrt{3}t}{2}$£¬
¡àS¡÷OPQ=$\frac{1}{2}$•OP•QM=$\frac{\sqrt{3}{t}^{2}}{4}$£»
µ±8¡Üt¡Ü12ʱ£¬S¡÷OPQ=$\frac{1}{2}$•OP•BH=2$\sqrt{3}$t£»
£¨3£©¡ßQµãÔÚBC±ßÉÏ£¬
¡à0£¼t¡Ü8
¡àO£¨0£¬0£©£¬P£¨t£¬0£©£¬Q£¨12-$\frac{t}{2}$£¬$\frac{\sqrt{3}t}{2}$£©£¬
¢ÙÈôOP=OQ£¬ÔòOP2=OQ2£»OP2=t2£¬OQ2=£¨12-$\frac{t}{2}$£©2+£¨$\frac{\sqrt{3}t}{2}$£©2
¼´£ºt2=£¨12-$\frac{t}{2}$£©2+£¨$\frac{\sqrt{3}t}{2}$£©2
½âµÃ£ºt=12£¾8£¨²»ºÏÌâÒ⣬ÉáÈ¥£©
¢ÚÈôPO=PQ£¬ÔòOP2=PQ2£»OP2=t2£¬PQ2=£¨12-$\frac{t}{2}$-t£©2+£¨$\frac{\sqrt{3}t}{2}$£©2
¼´£ºt2=£¨12-$\frac{t}{2}$-t£©2+£¨$\frac{\sqrt{3}t}{2}$£©2
½âµÃ£ºt1=6£¬t2=12£¬£¨ÉáÈ¥£©£¬
¢ÛÈôQO=QP£¬ÔòOQ2=PQ2£»PQ2=£¨12-$\frac{t}{2}$-t£©2+£¨$\frac{\sqrt{3}t}{2}$£©2£¬OQ2=£¨12-$\frac{t}{2}$£©2+£¨$\frac{\sqrt{3}t}{2}$£©2
¼´£º£¨12-$\frac{t}{2}$-t£©2+£¨$\frac{\sqrt{3}t}{2}$£©2=£¨12-$\frac{t}{2}$£©2+£¨$\frac{\sqrt{3}t}{2}$£©2![]()
½âµÃ£ºt1=0£¨ÉáÈ¥£©£¬t2=12£¨ÉáÈ¥£©£¬
×ÛÉÏËùÊö£¬µ±t=6ʱ£¬¡÷OPQΪµÈÑüÈý½ÇÐΣ®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁ˶¯µãÎÊÌ⣬·ÖÀàÌÖÂÛ£¬¹´¹É¶¨ÀíµÄÁé»îÔËÓÃÒÔ¼°µÈÑüÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ£»ÄÜÑÏÃܵÄ˼¿¼£¬ÇÉÃîµÄÔËÊýÐνáºÏÊǽâ¾öÎÊÌâµÄ¹Ø¼ü£®