题目内容

1.如图,将边长为2的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为(  )
A.(-2,1)B.(-1,2)C.($\sqrt{3}$,-1)D.(-$\sqrt{3}$,1)

分析 首先过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,易证得△AOE≌△OCD(AAS),则可得CD=OE=1,OD=AE=$\sqrt{3}$,继而求得答案.

解答 解:过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,
则∠ODC=∠AEO=90°,
∴∠OCD+∠COD=90°,
∵四边形OABC是正方形,
∴OC=OA,∠AOC=90°,
∴∠COD+∠AOE=90°,
∴∠OCD=∠AOE,
在△AOE和△OCD中,
$\left\{\begin{array}{l}{∠AEO=∠ODC}\\{∠AOE=∠OCD}\\{OC=AO}\end{array}\right.$,
∴△AOE≌△OCD(AAS),
∴CD=OE=1,OD=AE=$\sqrt{O{A}^{2}-O{E}^{2}}$=$\sqrt{{2}^{2}-{1}^{2}}$=$\sqrt{3}$,
∴点C的坐标为:(-$\sqrt{3}$,1).
故选D.

点评 此题考查了正方形的性质、全等三角形的判定与性质以及勾股定理.注意准确作出辅助线、证得△AOE≌△OCD是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网