ÌâÄ¿ÄÚÈÝ
12£®ÈôÁ½¸ö¶þ´Îº¯ÊýµÄͼÏó¹ØÓÚÔµãOÖÐÐĶԳƣ¬Ôò³ÆÕâ¸ö¶þ´Îº¯ÊýΪ¡°¹ØÓÚÔµãÖÐÐĶԳƶþ´Îº¯Êý¡±£®£¨1£©ÇëÖ±½Óд³ö¶þ´Îº¯Êýy=2£¨x-1£©2+3¡°¹ØÓÚÔµãÖÐÐĶԳƶþ´Îº¯Êý¡±y¡äµÄº¯Êý±í´ïʽ£»
£¨2£©µ±£¨1£©ÖеĶþ´Îº¯Êýy£¬y¡äµÄº¯ÊýÖµÍ¬Ê±ËæxµÄÔö´ó¶ø¼õСʱ£¬ÇóxµÄȡֵ·¶Î§£»
£¨3£©Èô¹ØÓÚxµÄÁ½¸ö¶þ´Îº¯Êýy1=axx2+b1x+c1ºÍy2=a2x2+b2x+c2Ϊ¡°¹ØÓÚÔµãÖÐÐĶԳƶþ´Îº¯Êý¡±£¬ÒÑÖªa1=1£¬º¯Êýy3=y1+y2µÄͼÏóÓ뺯Êýy4=$\frac{1}{2}$£¨y1-y2£©µÄͼÏó½»Óڵ㣨1£¬2£©£¬ÊԱȽÏy3£¬y4µÄ´óС£®
·ÖÎö £¨1£©°Ñ£¨-x£¬-y£©´úÈëy=2£¨x-1£©2+3£¬¼´¿ÉµÃµ½½âÎöʽy¡ä£®
£¨2£©»³öͼÏ󼴿ɽâ¾öÎÊÌ⣮
£¨3£©ÏÈÇó³öy3£¬y4µÄ½âÎöʽ£¬»³öͼÏ󼴿ɽâ¾öÎÊÌ⣮
½â´ð ½â£º£¨1£©¶þ´Îº¯Êýy=2£¨x-1£©2+3¡°¹ØÓÚÔµãÖÐÐĶԳƶþ´Îº¯Êý¡±y¡äµÄº¯Êý±í´ïʽΪy¡ä=-2£¨£¨x+1£©2-3£®
£¨2£©ÈçͼÓÉͼÏó¿ÉÖª£¬¶þ´Îº¯Êýy£¬y¡äµÄº¯ÊýÖµÍ¬Ê±ËæxµÄÔö´ó¶ø¼õСʱ£¬-1¡Üx¡Ü1£®![]()
£¨3£©ÓÉÌâÒ⣬a2=-1£¬b1=b2£¬c1=-c2£¬
¡ày3=y1+y2=2b1x£¬y4=$\frac{1}{2}$£¨y1-y2£©=x2+c1£¬
¡ßº¯Êýy3=y1+y2µÄͼÏóÓ뺯Êýy4=$\frac{1}{2}$£¨y1-y2£©µÄͼÏó½»Óڵ㣨1£¬2£©£¬
¡àb1=1£¬c1=1£¬
¡ày3=2x£¬y4=x2+1£¬
¡àÓÉͼÏó¿ÉÖª£¬y4¡Ýy3£®
£®
µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢½âÌâµÄ¹Ø¼üÊÇÀí½âÌâÒ⣬ѧ»áÀûÓú¯ÊýͼÏó½â¾öÎÊÌ⣬ѧ»á̽¾¿¹ØÓÚÔµãÖÐÐĶԳƵĶþ´Îº¯ÊýµÄ½âÎöʽµÄÌØÕ÷£¬ÀûÓÃ̽¾¿µÃµ½¹æÂɽâ¾öÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿