题目内容
观察下列等式:
=1-
,
=
-
,
=
-
,将以上三个等式两边分别相加得:
+
+
=1-
+
-
+
-
=1-
=
.
(1)直接写出下列格式的计算结果:
+
+
+…+
= .
(2)猜想并写出:
= .
| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 3 |
| 4 |
(1)直接写出下列格式的计算结果:
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n(n+1) |
(2)猜想并写出:
| 1 |
| n(n+2) |
考点:规律型:数字的变化类
专题:规律型
分析:(1)将各分数分别写成两个分数的差,然后计算即可得解;
(2)根据分母的两个因数相差2,类似(1)的结果写出即可.
(2)根据分母的两个因数相差2,类似(1)的结果写出即可.
解答:解:(1)
+
+
+…+
=1-
+
-
+
-
+…+
-
=1-
=
;
(2)
=
(
-
).
故答案为:
;
(
-
).
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n(n+1) |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
=
| n |
| n+1 |
(2)
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
故答案为:
| n |
| n+1 |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
点评:本题是对数字变化规律的考查,读懂题目信息,理解将分数写成两个分数的差的形式的方法是解题的关键.
练习册系列答案
相关题目