题目内容

9.如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm.动点P从点A出发沿AD方向向点D以1cm/s的速度运动.动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.设运动时间为t.
(1)当t为何值时,四边形PQCD是平行四边形?
(2)当t为何值时,四边形PQBA是平行四边形?
(3)当四边形PQBA是平行四边形时,连接AQ,AB=$\sqrt{30}$.求AQ长.

分析 (1)设经过ts时,四边形PQCD是平行四边形,根据DP=CQ,代入后求出即可;
(2)设经过ts时,四边形PQBA是矩形,根据AP=BQ,代入后求出即可;
(3)由勾股定理即可求得结论.

解答 解:(1)设经过ts时,四边形PQCD是平行四边形,
∵AP=t,CQ=3t,DP=24-t,
∴DP=CQ,
∴24-t=3t,
t=6,
即经过6s时,四边形PQCD是平行四边形;

(2)设经过ts时,四边形PQBA是平行四边形,
∵AP=t,CQ=3t,BQ=26-3t,
∴AP=BQ,
∴26-3t=t,
t=$\frac{13}{2}$,
即经过$\frac{13}{2}$s时,四边形PQBA是平行四边形;

(3)∵四边形PQCD是平行四边形,BQ=26-3t=26-3×$\frac{13}{2}$=$\frac{13}{2}$,∠ABQ=90°,
∴AQ=$\sqrt{A{B}^{2}+B{Q}^{2}}$=$\sqrt{(\sqrt{30})^{2}+(\frac{13}{2})^{2}}$=$\frac{17}{2}$(cm).

点评 此题主要考查勾股定理和平行四边形的判定掌握情况,本题解题关键是找出等量关系即可得解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网