题目内容

19.已知x+$\frac{1}{x}$=2$\sqrt{3}$,则分式$\frac{{x}^{4}-2{x}^{2}+1}{{x}^{2}}$的值是8.

分析 首先利用完全平方公式可得(x+$\frac{1}{x}$)2=(2$\sqrt{3}$)2,进而可得x2+$\frac{1}{{x}^{2}}$=10,再把分式$\frac{{x}^{4}-2{x}^{2}+1}{{x}^{2}}$进行变形可得x2-2+$\frac{1}{{x}^{2}}$,再利用代入法可得答案.

解答 解:∵x+$\frac{1}{x}$=2$\sqrt{3}$,
∴(x+$\frac{1}{x}$)2=(2$\sqrt{3}$)2
x2+2+$\frac{1}{{x}^{2}}$=12,
∴x2+$\frac{1}{{x}^{2}}$=10,
∴$\frac{{x}^{4}-2{x}^{2}+1}{{x}^{2}}$=x2-2+$\frac{1}{{x}^{2}}$=10-2=8.
故答案为:8.

点评 此题主要考查了分式的化简求值,关键是掌握完全平方公式,正确把分式进行化简.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网