题目内容

18.如图,点E在直线BH、DC之间,点A为BH上一点,且AE⊥CE,∠DCE-∠HAE=90°.求证:BH∥CD.

分析 延长AE交DC于F,根据AE⊥CE垂直可得∠CEF=90°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠DCE-∠AFD=∠CEF=90°,从而得到∠HAE=∠AFD,再根据内错角相等,两直线平行即可得证.

解答 证明:如图,延长AE交DC于F,
∵AE⊥CE,
∴∠CEF=90°,
根据三角形的外角性质,∠DCE-∠AFD=∠CEF=90°,
又∵∠DCE-∠HAE=90°,
∴∠HAE=∠AFD,
∴BH∥CD.

点评 本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作出辅助线是解题的关键

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网