题目内容

已知?ABCD中,BC=1,AB=2,BC=1,AB=2,∠B=60°,若E为BC边延长线上一点,CE=1,连接AE交CD于F.
(1)求证:AF=FE;
(2)连接BF并延长交线段DE于G,求BG的长.
考点:平行四边形的性质,全等三角形的判定与性质
专题:
分析:(1)由四边形ABCD是平行四边形,易得CF为△ABE的中位线即证;
(2)易知△ABE为正△,继而证得△ADF≌△ECF,可得BF垂直平分AE,∠DEB=90°,继而求得答案.
解答:(1)证明:四边形ABCD是平行四边形,
∴AB∥CD,
∴CE:BC=EF:AF,
∵BC=1,CE=1,
∴BC=CE,
∴AF=FE;

(2)∵BE=BC+CE=2,AB=2,
∴AB=BE,
∵∠B=60°,
∴△ABE是等边三角形,
∴AE=AB=BE=2,
∵AD=BC=1,AD∥BC,
∴AD=CE,∠DAF=∠CEF,
在△ADF和△ECF中,
∠DAF=∠CEF
∠AFD=∠EFC
AD=CE

∴△ADF≌△ECF(AAS),
∴AF=FE=1,
∴BF垂直平分AE,
∴EF=CE=1,
∵∠AEB=60°,
∴△CEF是等边三角形,
同理:△ADF是等边三角形,
∴DF=EF,
∴∠EDF=∠DEF=30°,
∴∠DEC=90°,
∴BG=
BC
cos∠GBE
=
4
3
3
点评:此题考查了平行四边形的性质、等边三角形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网