ÌâÄ¿ÄÚÈÝ
13£®Èçͼ1£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖª¾ØÐÎABCDµÄÈý¸ö¶¥µãB£¨1£¬0£©£¬C£¨2£¬0£©£¬D£¨2£¬$\sqrt{3}$£©£¬Ë«ÇúÏßy=$\frac{k}{x}$£¨x£¾0£©¹ýµãA£¬¶¯µãP´ÓµãA³ö·¢£¬ÑØÏß¶ÎABÏòµãBÔ˶¯£¬Í¬Ê±¶¯µãQ´ÓµãC³ö·¢£¬ÑØÏß¶ÎCDÏòµãDÔ˶¯£¬µãP£¬QµÄÔ˶¯ËٶȾùΪÿÃë$\sqrt{3}$¸öµ¥Î»£¬Ô˶¯Ê±¼äΪtÃ룮£¨1£©Ö±½Óд³öµãAµÄ×ø±ê£¬²¢Çó³öË«ÇúÏߵĽâÎöʽ£»
£¨2£©µãMÊÇË«ÇúÏßÉÏÒ»¶¯µã£¬ÇÒÒÔP£¬Q£¬C£¬MΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ¬ÇëÖ±½Óд³öµãMµÄ×ø±ê£»
£¨3£©Èçͼ2£¬¹ýµãQ×÷QH¡ÍCD½»ACÓÚµãH£¬ÔÚ¶¯µãP£¬QÔ˶¯µÄ¹ý³ÌÖУ¬ÔÚ×ø±êÆ½ÃæÄÚÊÇ·ñ´æÔÚµãN£¬Ê¹ÒÔB£¬H£¬P£¬NΪ¶¥µãµÄËıßÐÎΪÁâÐΣ¿Èô´æÔÚ£¬ÇëÇó³ötµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©¸ù¾Ý¾ØÐεÄÐÔÖʼ´¿ÉµÃµ½½áÂÛ
£¨2£©·ÖÈýÖÖÇé¿ö£¬µ±ÒÔPQΪ¶Ô½ÇÏßʱ£¬Èçͼ1£¬PM¡ÎCQ£¬PM=CQ£¬µÃµ½M£¨1£¬$\sqrt{3}$£©£¬µ±ÒÔCQΪ¶Ô½ÇÏßʱ£¬Èçͼ2£¬DQ=PB£¬QF=FC£¬µÃµ½DQ=QF=FC£¬ÓÚÊÇÇóµÃM£¨3£¬$\frac{\sqrt{3}}{3}$£©£¬µ±ÒÔCPΪ¶Ô½ÇÏßʱ£¬±¾´æÔÚ£»
£¨3£©´æÔÚ£¬¸ù¾ÝAD=1£¬DC=$\sqrt{3}$£¬ÇóµÃ¡ÏACD=30¡ã£¬ÓÚÊǵõ½H£¨2-t£¬$\sqrt{3}$t£©£¬p£¨1£¬$\sqrt{3}$-$\sqrt{3}$t£©£¬µ±PH2=BH2ʱ£¬µ±PH2=BH2ʱ£¬µ±PB2=BH2ʱ·Ö±ðÁз½³ÌÇóµÃtµÄÖµ£®
½â´ð
½â£º£¨1£©¡ßËıßÐÎABCDÊǾØÐΣ¬
¡àAB=CD£¬AB¡ÍxÖᣬCD¡ÍxÖᣬ
¡ßB£¨1£¬0£©£¬D£¨2£¬$\sqrt{3}$£©£¬
¡àOB=1£¬CD=$\sqrt{3}$£¬
¡àAB=$\sqrt{3}$£¬
¡àA£¨1£¬$\sqrt{3}$£©£¬
¡ßË«ÇúÏßy=$\frac{k}{x}$£¨x£¾0£©¹ýµãA£¬![]()
¡àk=$\sqrt{3}$£¬
¡àË«ÇúÏߵĽâÎöʽΪ£ºy=$\frac{\sqrt{3}}{x}$£»
£¨2£©¡ßµãP£¬QµÄÔ˶¯ËٶȾùΪÿÃë$\sqrt{3}$¸öµ¥Î»£¬
¡àµ±ÒÔPQΪ¶Ô½ÇÏßʱ£¬Èçͼ1£¬
PM¡ÎCQ£¬PM=CQ£¬
¡àMÓëAÖØºÏ£¬
¡àM£¨1£¬$\sqrt{3}$£©£¬
µ±ÒÔCQΪ¶Ô½ÇÏßʱ£¬Èçͼ2£¬DQ=PB£¬QF=FC£¬
¡àDQ=QF=FC£¬
¡àP£¨1£¬$\frac{\sqrt{3}}{3}$£©£¬
¡àM£¨3£¬$\frac{\sqrt{3}}{3}$£©£¬
µ±ÒÔCPΪ¶Ô½ÇÏßʱ£¬±¾´æÔÚ£»
£¨3£©´æÔÚ£¬¡ßAD=1£¬DC=$\sqrt{3}$£¬¡à¡ÏACD=30¡ã£¬B£¨1£¬0£©£¬
¡àH£¨2-t£¬$\sqrt{3}$t£©£¬P£¨1£¬$\sqrt{3}$-$\sqrt{3}$t£©£¬
¡ßÔÚÆ½ÃæÄÚ£¬¡àÖ»ÒªÁÚ±ßÏàµÈ¼´¿É£¬
µ±PH2=BH2ʱ£¬¼´£¨2-t-1£©2+£¨2$\sqrt{3}$t-$\sqrt{3}$£©2=£¨t-1£©2+£¨$\sqrt{3}$-$\sqrt{3}$t£©2£¬
½âµÃ£ºt=0£¬t=$\frac{2}{3}$£¬
¡ß0¡Üt¡Ü1£¬
¡à´æÔÚ£¬
µ±PH2=PB2ʱ£¬£¨1-2+t£©2+£¨$\sqrt{3}$-$\sqrt{3}$t-$\sqrt{3}$t£©2=£¨$\sqrt{3}$-$\sqrt{3}$t£©2£¬
½âµÃ£ºt=$\frac{4¡À\sqrt{6}}{10}$£¬¡ß0¡Üt¡Ü1£¬
¡àt=$\frac{4¡À\sqrt{6}}{10}$£¬
¡ßµ±PB2=BH2ʱ£¬£¨$\sqrt{3}$-$\sqrt{3}$t£©2=£¨1-2+t£©2+£¨$\sqrt{3}$t£©2£¬
½âµÃ£ºt=-2¡À$\sqrt{6}$£¬
¡ß0¡Üt¡Ü1£¬
¡àt=-2+$\sqrt{6}$£¬
×ÛÉÏËùÊö£ºµ±t=0£¬$\frac{2}{3}$£¬$\frac{4¡À\sqrt{6}}{10}$£¬-2$+\sqrt{6}$ʱ£¬ÒÔB£¬H£¬P£¬NΪ¶¥µãµÄËıßÐÎΪÁâÐΣ®
µãÆÀ ±¾Ì⿼²éÁË·´±ÈÀýº¯ÊýµÄÐÔÖÊ£¬Çóº¯ÊýµÄ½âÎöʽ£¬Æ½ÐÐËıßÐεÄÅж¨ºÍÐÔÖÊ£¬ÁâÐεÄÅж¨ºÍÐÔÖÊ£¬ÊìÁ·ÕÆÎÕÁâÐεÄÐÔÖʶ¨ÀíÊǽâÌâµÄ¹Ø¼ü£®
£¨1£©Ä³»§¾ÓÃñ2Ô·ÝÓõç90¶È£¬³¬¹ýÁ˹涨µÄa¶È£¬Ôò³¬¹ý²¿·ÖÓ¦¸Ã½»µç·Ñ¶àÉÙÔª£¨Óú¬aµÄ´úÊýʽ±íʾ£©£¿£¨90-a£©¡Á0.5£®
£¨2£©Í¼±íÊÇÕâ»§¾ÓÃñ3Ô¡¢4ÔµÄÓõçÇé¿öºÍ½»·ÑÇé¿ö£º
| ÔÂ·Ý | ÓõçÁ¿ | ½»µç·Ñ×ÜÊý |
| 3ÔÂ | 80¶È | 25Ôª |
| 4ÔÂ | 45¶È | 10Ôª |