题目内容
11.(1)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC,CD上的点且∠EAF=
60°,探究图中线段BE、EF、FD之间的数量关系.
小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是BE+DF=EF;
(2)探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=$\frac{1}{2}$∠BAD,上述结论是否仍然成立,并说明理由;
(3)实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以45海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以60海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两地分别到达E、F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.
分析 (1)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;
(2)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;
(3)连接EF,延长AE、BF相交于点C,然后与(2)同理可证.
解答 解:(1)EF=BE+DF,证明如下:
在△ABE和△ADG中,
$\left\{\begin{array}{l}{DG=BE}\\{∠B=∠ADG}\\{AB=AD}\end{array}\right.$,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=$\frac{1}{2}$∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中,
$\left\{\begin{array}{l}{AE=AG}\\{∠EAF=∠GAF}\\{AF=AF}\end{array}\right.$,
∴△AEF≌△AGF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF;
故答案为 EF=BE+DF.
(2)结论EF=BE+DF仍然成立;
理由:延长FD到点G.使DG=BE.连结AG,如图2,![]()
在△ABE和△ADG中,$\left\{\begin{array}{l}{DG=BE}\\{∠B=∠ADG}\\{AB=AD}\end{array}\right.$,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=$\frac{1}{2}$∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中,
$\left\{\begin{array}{l}{AE=AG}\\{∠EAF=∠GAF}\\{AF=AF}\end{array}\right.$,
∴△AEF≌△AGF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF;
(3)如图3,连接EF,延长AE、BF相交于点C,![]()
∵∠AOB=30°+90°+(90°-70°)=140°,∠EOF=70°,
∴∠EOF=$\frac{1}{2}$∠AOB,
又∵OA=OB,∠OAC+∠OBC=(90°-30°)+(70°+50°)=180°,
∴符合探索延伸中的条件,
∴结论EF=AE+BF成立,
即EF=2×(45+60)=210(海里).
答:此时两舰艇之间的距离是210海里.
点评 本题考查了全等三角形的判定以及全等三角形对应边相等的性质,本题中求证△AEF≌△AGF是解题的关键.
| A. | 4,3,3 | B. | 1,5,6 | C. | 2,5,4 | D. | 5,8,4 |
(1)根据如图所示多面体模型,完成表格中的空格:
| 多面体 | 各面形状 | 面数(F) | 顶点数(V) | 棱数(E) |
| 四面体 | 三角形 | 4 | 4 | 6 |
| 长方体 | 长方形 | 6 | 8 | x |
| 正八面体 | 正三角形 | 8 | y | 12 |
| 正十二面体 | 正五面型 | 12 | 20 | 30 |
(2)已知某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和六边形两种多边形拼接而成,且有18个顶点,每个顶点处都有4条棱,设该多面体外表面三角形的个数为m个,六边形的个数为n个,求m+n的值;
(3)在(2)的情况下,又已知m+2q=18,求代数式(3n-6q)2-$\frac{2}{10q-5n}$的值.
| A. | 美 | B. | 丽 | C. | 莱 | D. | 山 |
| A. | 赚24元 | B. | 赔24元 | C. | 不赚不赔 | D. | 无法确定 |