ÌâÄ¿ÄÚÈÝ
20£®£¨1£©¾¹ý¶àÉÙʱ¼ä£¬Ïß¶ÎPQµÄ³¤¶ÈΪ2£¿
£¨2£©Ð´³öÏß¶ÎPQ³¤¶ÈµÄƽ·½yÓëʱ¼ätÖ®¼äµÄº¯Êý¹ØÏµÊ½£»
£¨3£©Ñо¿±íÃ÷´æÔÚʱ¼ät£¬Ê¹P¡¢Q¡¢M¹¹³ÉµÄÈý½ÇÐÎÓë¡÷MONÏàËÆ£¬ÇëÇó³öʱ¼ät£¬²¢Ö±½Ó¸ø³ö´Ëʱ¡÷GPMµÄÐÎ×´£®
·ÖÎö £¨1£©ÏÈÓÉÌâÒâÇó³öP¡¢QÁ½µãÒÆ¶¯µÄËÙ¶È£¬ÔÙÉè¾¹ýt·ÖÖÓ£¬Ïß¶ÎPQµÄ³¤¶ÈΪ2£¬ÓÃy±íʾ³öPM¼°QMµÄ³¤£¬Óɹ´¹É¶¨Àí¼´¿ÉÇó³ötµÄÖµ£»
£¨2£©ÓÉ£¨1£©ÖÐPM¼°QMµÄ³¤¶È¼´¿ÉµÃ³öÏß¶ÎPQ³¤¶ÈµÄƽ·½£¬yÓëʱ¼ätÖ®¼äµÄº¯Êý¹ØÏµÊ½¼°tµÄȡֵ·¶Î§£»
£¨3£©ÓÉÓÚÁ½ÏàËÆÈý½ÇÐεĶÔÓ¦±ß²»ÄÜÈ·¶¨£¬¹ÊÓ¦·ÖÁ½ÖÖÇé¿ö½øÐÐÌÖÂÛ£®
½â´ð ½â£º£¨1£©¡ßA£¨2£¬4£©£¬¡àOM=AN=2£¬AM=ON=4£¬
¡ßPµã1·ÖÖӿɵ½´ïMµã£¬Qµã1·ÖÖӿɵ½´ïAµã£¬
¡àPµãµÄÔ˶¯ËÙ¶ÈÊÇ2¸öµ¥Î»Ã¿·ÖÖÓ£¬QµãµÄÔ˶¯ËÙ¶ÈÊÇ4¸öµ¥Î»Ã¿·ÖÖÓ£¬
Éè¾¹ýtÃ룬ÔòPM=2-2t£¬MQ=4t£¬
ÔÚRt¡÷PQMÖУ¬PM2+MQ2=PQ2£¬¼´£¨2-2t£©2+16t2=4£¬
20t2-4t=0£¬½âµÃt=$\frac{2}{5}$»ò0£¨ÉáÈ¥£©£¬
¼´¾¹ý$\frac{2}{5}$Ã룬Ïß¶ÎPQµÄ³¤¶ÈΪ2£®
£¨2£©ÓÉ£¨1£©¿ÉÖª£¬PM=2-2t£¬QM=4t£¬
ÔÚRt¡÷PQMÖУ¬PQ2=PM2+QM2£¬
¼´y=£¨2-2t£©2+16t2£¬
¼´y=20t2-8t+4£»
£¨3£©µ±¡÷PMQ¡×¡÷MONʱ£¬
$\frac{PM}{OM}$=$\frac{MQ}{ON}$£¬
¼´$\frac{2-2t}{2}$=$\frac{4t}{4}$£¬
½âµÃ£ºt=$\frac{1}{2}$£¬
µ±¡÷QMP¡×¡÷MONʱ£¬
$\frac{QM}{OM}$=$\frac{MP}{ON}$£¬
¼´$\frac{4t}{2}$=$\frac{2-2t}{4}$£¬
½âµÃ£ºt=$\frac{1}{5}$£¬
¹Êµ±t=$\frac{1}{2}$»ò$\frac{1}{2}$ʱ£¬P¡¢Q¡¢M¹¹³ÉµÄÈý½ÇÐÎÓë¡÷MONÏàËÆ£®
µãÆÀ ±¾Ì⿼²éµÄÊÇÏàËÆÐÎ×ÛºÏÌâ£¬Éæ¼°µ½ÏàËÆÈý½ÇÐεÄÐÔÖʼ°¹´¹É¶¨Àí£¬¸ù¾ÝÌâÒâÓÃt±íʾ³öPM¼°QMµÄ³¤¶ÈÊǽâ´ð´ËÌâµÄ¹Ø¼ü£®
| A£® | $\sqrt{2}$+$\sqrt{3}$=$\sqrt{5}$ | B£® | $\sqrt{2}$¡Á$\sqrt{8}$=4 | C£® | $\sqrt{6}$¡Â$\sqrt{5}$=$\frac{\sqrt{6}}{5}$ | D£® | $\sqrt{£¨-3£©^{2}}$=-3 |
| A£® | ʹ | B£® | ÈË | C£® | ½ø | D£® | ²½ |