题目内容
2.一个不透明的口袋中装有四个完全相同的小球,把它们分别标号为1,2,3,4.从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,请用列表法或画树形图的方法,求两次摸出的小球上所标数字之和大于4的概率.分析 通过列表展示12种等可能的结果数,再找出所标数字之和大于4的所占结果数,然后根据概率公式计算.
解答 解:列表如下:
| 1 | 2 | 3 | 4 | |
| 1 | (1,2) | (1,3) | (1,4) | |
| 2 | (2,1) | (2,3) | (2,4) | |
| 3 | (3,1) | (3,2) | (3,4) | |
| 4 | (4,1) | (4,2) | (4,3) |
所以 P(数字之和大于4)=$\frac{8}{12}$=$\frac{2}{3}$.
点评 本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
练习册系列答案
相关题目
13.某市园林部门为了扩大城市的绿化面积,进行了大量的树木移栽,下表记录的是在相同的条件下移栽某种幼树的棵树与成活棵树:
依此估计这种幼树成活的概率是0.9.(结果用小数表示,精确到0.1)
| 移栽棵树 | 100 | 1000 | 10000 | 20000 |
| 成活棵树 | 89 | 910 | 9008 | 18004 |
17.“…日啖荔枝三百颗,不辞长作岭南人”.是荔枝在运输、储存中会有损坏,下表是销售人员随机抽取若干荔枝,进行荔枝损坏率的统计的一组数据.
估计荔枝损坏的概率是0.1答案不唯一.
| 荔枝总质量n/Kg | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 |
| 损坏荔枝质量m/Kg | 5.50 | 10.50 | 15.15 | 19.42 | 24.25 | 30.93 | 35.32 | 39.24 | 44.57 | 51.51 |
| 荔枝损坏的频率$\frac{m}{n}$ | 0.110 | 0.105 | 0.101 | 0.097 | 0.097 | 0.103 | 0.101 | 0.098 | 0.099 | 0.103 |