题目内容

17.在△ABC中,D、E分别是BC、AC中点,BF平分∠ABC.交DE于点F.AB=8,BC=6,则EF的长为(  )
A.1B.2C.3D.4

分析 利用中位线定理,得到DE∥AB,根据平行线的性质,可得∠EDC=∠ABC,再利用角平分线的性质和三角形内角外角的关系,得到DF=DB,进而求出DF的长,易求EF的长度.

解答 解:∵在△ABC中,D、E分别是BC、AC的中点,AB=8,
∴DE∥AB,DE=$\frac{1}{2}$AB=4.
∴∠EDC=∠ABC.
∵BF平分∠ABC,
∴∠EDC=2∠FBD.
∵在△BDF中,∠EDC=∠FBD+∠BFD,
∴∠DBF=∠DFB,
∴FD=BD=$\frac{1}{2}$BC=$\frac{1}{2}$×6=3.
∴FE=DE-DF=4-3=1.
故选:A.

点评 本题考查了三角形中位线定理和等腰三角形的判定于性质.三角形的中位线平行于第三边,当出现角平分线,平行线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网