题目内容

2.如图,在△ABC中,∠CAB=55°,将△ABC在平面内绕点A逆时针旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数至少为(  )
A.60°B.65°C.70°D.75°

分析 据两直线平行,内错角相等可得∠ACC′=∠CAB,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′,再根据∠CAC′、∠BAB′都是旋转角解答.

解答 解:∵CC′∥AB,
∴∠ACC′=∠CAB=55°,
∵△ABC绕点A旋转得到△AB′C′,
∴AC=AC′,
∴∠CAC′=180°-2∠ACC′=180°-2×55°=70°,
∴∠CAC′=∠BAB′=70°.
故选C.

点评 本题考查了旋转的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网