题目内容

14.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E在同一直线上,连结BD.
(1)求证:BD=EC;
(2)BD与CE有何位置关系?请证你的猜想.

分析 (1)求出∠BAD=∠CAE,根据SAS推出△ABD≌△ACE,根据全等三角形的性质推出即可;
(2)根据全等三角形的性质得出∠BDA=∠E,根据∠E+∠ADE=90°求出∠BDA+∠ADE=90°即可.

解答 (1)证明:∵∠BAC=∠DAE=90°,
∴∠BAC-∠DAC=∠DAE-∠DAC,
即∠BAD=∠CAE,
在△ABD和△ACE中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$,
∴△ABD≌△ACE(SAS),
∴BD=EC;

(2)BD⊥CE,
证明:∵△ABD≌△ACE,
∴∠BDA=∠E,
又∵∠E+∠ADE=90°,
∴∠BDA+∠ADE=90°,即∠BDE=90°,
∴BD⊥DE.

点评 本题考查了全等三角形的性质和判定的应用,能综合运用定理进行推理是解此题的关键,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS,②全等三角形的对应角相等,对应边相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网