题目内容
列不等式(组)解应用题:
一工厂要将100吨货物运往外地,计划租用某运输公司甲、乙两种型号的汽车共6辆一次将货物全部运动,已知每辆甲型汽车最多能装该种货物16吨,租金800元,每辆乙型汽车最多能装该种货物18吨,租金850元,若此工厂计划此次租车费用不超过5000元,通过计算求出该公司共有几种租车方案?请你设计出来,并求出最低的租车费用.
一工厂要将100吨货物运往外地,计划租用某运输公司甲、乙两种型号的汽车共6辆一次将货物全部运动,已知每辆甲型汽车最多能装该种货物16吨,租金800元,每辆乙型汽车最多能装该种货物18吨,租金850元,若此工厂计划此次租车费用不超过5000元,通过计算求出该公司共有几种租车方案?请你设计出来,并求出最低的租车费用.
考点:一元一次不等式组的应用
专题:
分析:设租用甲型汽车x辆,则租用乙型汽车(6-x)辆,根据装货物的吨数是100吨,以及租车费用不超过5000元,列出不等式组,解出x的值,进一步即可求解.
解答:解:设租用甲型汽车x辆,则租用乙型汽车(6-x)辆,
依题意得:
,
解得2≤x≤4,
∵x的值是整数
∴x的值是2,3,4.
∴该公司有三种租车方案:
①租用甲型汽车2辆,租用乙型汽车4辆,费用为5000元;
②租用甲型汽车3辆,租用乙型汽车3辆,费用为4950元;
③租用甲型汽车4辆,租用乙型汽车2辆,费用为4900元.
∴最低的租车费用为4900元.
依题意得:
|
解得2≤x≤4,
∵x的值是整数
∴x的值是2,3,4.
∴该公司有三种租车方案:
①租用甲型汽车2辆,租用乙型汽车4辆,费用为5000元;
②租用甲型汽车3辆,租用乙型汽车3辆,费用为4950元;
③租用甲型汽车4辆,租用乙型汽车2辆,费用为4900元.
∴最低的租车费用为4900元.
点评:本题考查了一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.
练习册系列答案
相关题目