题目内容

6.如图,AD为△ABC的高,BE为△ABC的角平分线,若∠EBA=32°,∠AEB=
70°.
(I)求∠CAD的度数;
(2)若点F为线段BC上任意一点,当△EFC为直角三角形时,则∠BEF的度数为58°或20°.

分析 (1)根据角平分线的定义、三角形内角和定理计算即可;
(2)分∠EFC=90°和∠FEC=90°两种情况解答即可.

解答 解:(1)∵BE为△ABC的角平分线,
∴∠CBE=∠EBA=32°,
∵∠AEB=∠CBE+∠C,
∴∠C=70°-32°=38°,
∵AD为△ABC的高,
∴∠ADC=90°,
∴∠CAD=90°-∠C=52°;
(2)当∠EFC=90°时,∠BEF=90°-∠CBE=58°,
当∠FEC=90°时,∠BEF=180°70°-90°=20°,
故答案为:58°或20°.

点评 本题考查的是三角形的内角和定理,掌握三角形内角和等于180°是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网