题目内容

5.阅读下列因式分解的过程,再回答所提出的问题:
1+x+x(x+1)+x(x+1)2
(1+x)[1+x+x(x+1)]
=(1+x)2(1+x)
=(1+x)3
(1)上述分解因式的方法是提公因式法,共应用了2次.
(2)若分解1+x+x(x+1)+x(x+1)2+x(x+1)3,则需应用上述方法3次,结果是(x+1)4
(3)分解因式:1+x+x(x+1)+x(x+1)2…+x(x+1)n(n为正整数)的结果是(x+1)n+1

分析 (1)根据已知材料直接回答即可;
(2)利用已知材料进而提取公因式(1+x),进而得出答案;
(3)利用已知材料提取公因式进而得出答案.

解答 解:(1)上述分解因式的方法是:提公因式法,共应用了2次.
故答案为:提公因式法,2次;

(2)1+x+x(x+1)+x(x+1)2+x(x+1)3
=(1+x)[1+x+x(1+x)+x(1+x)2]
=(1+x)(1+x)[1+x+x(1+x)]
=(1+x)2(1+x)(1+x)
=(1+x)4
故分解1+x+x(x+1)+x(x+1)2+x(x+1)3,则需应用上述方法3次,结果是:(x+1)4

(3)分解因式:1+x+x(x+1)+x(x+1)2…+x(x+1)n(n为正整数)的结果是:(x+1)n+1
故答案为:(x+1)n+1

点评 此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网