题目内容

16.类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.
原题:如图1,在?ABCD中,点E是BC边上的中点,点F是线段AE上一点,BF的延长线交射线CD于点G,若$\frac{AF}{EF}$=3,求$\frac{CD}{CG}$的值.
(1)尝试探究
在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是AB=3EH,CG和EH的数量关系是CG=2EH,$\frac{CD}{CG}$的值是$\frac{3}{2}$
(2)类比延伸
如图2,在原题的条件下,若$\frac{AF}{EF}$=m(m≠0),则$\frac{CD}{CG}$的值是$\frac{m}{2}$(用含m的代数式表示),试写出解答过程.
(3)拓展迁移
如图3,梯形ABCD中,DC∥AB,点E是BC延长线上一点,AE和BD相交于点F,若$\frac{AB}{CD}$=a,$\frac{BC}{BE}$=b(a>0,b>0),则$\frac{AF}{EF}$的值是ab(用含a,b的代数式表示).

分析 (1)本问体现“特殊”的情形,$\frac{AF}{EF}$=3是一个确定的数值.如答图1,过E点作平行线,构造相似三角形,利用相似三角形和中位线的性质,分别将各相关线段均统一用EH来表示,最后求得比值;
(2)本问体现“一般”的情形,$\frac{AF}{EF}$=m不再是一个确定的数值,但(1)问中的解题方法依然适用,如答图2所示.
(3)本问体现“类比”与“转化”的情形,将(1)(2)问中的解题方法推广转化到梯形中,如答图3所示

解答 解:(1)依题意,过点E作EH∥AB交BG于点H,如图1所示.

则有△ABF∽△EHF,
∴$\frac{AB}{EH}$=$\frac{AF}{EF}$=3,
∴AB=3EH.
∵?ABCD,EH∥AB,
∴EH∥CD,
又∵E为BC中点,
∴EH为△BCG的中位线,
∴CG=2EH.
∴$\frac{CD}{CG}=\frac{AB}{CG}=\frac{3EH}{2EH}=\frac{3}{2}$.
故答案为:AB=3EH;CG=2EH;$\frac{3}{2}$.
(2)如图2所示,作EH∥AB交BG于点H,则△EFH∽△AFB.

∴$\frac{AB}{EH}=\frac{AF}{EF}=m$.
∴AB=mEH.
∵AB=CD,
∴CD=mEH.
∵EH∥AB∥CD,
∴△BEH∽△BCG.
∴$\frac{CG}{EH}=\frac{BC}{BE}$=2,
∴CG=2EH.
∴$\frac{CD}{CG}=\frac{mEH}{2EH}$=$\frac{m}{2}$.
故答案为:$\frac{m}{2}$.
(3)如图3所示,过点E作EH∥AB交BD的延长线于点H,则有EH∥AB∥CD.

∵EH∥CD,
∴△BCD∽△BEH,
∴$\frac{CD}{EH}=\frac{BC}{BE}$=b,
∴CD=bEH.
又$\frac{AB}{CD}=a$,
∴AB=aCD=abEH.
∵EH∥AB,
∴△ABF∽△EHF,
∴$\frac{AF}{EF}=\frac{AB}{EH}=\frac{abEH}{EH}$=ab.
故答案为:ab.

点评 本题的设计独具匠心:由平行四边形中的一个特殊的例子出发(第1问),推广到平行四边形中的一般情形(第2问),最后再通过类比、转化到梯形中去(第3问).各种图形虽然形式不一,但运用的解题思想与解题方法却是一以贯之:即通过构造相似三角形,得到线段之间的比例关系,这个比例关系均统一用同一条线段来表达,这样就可以方便地求出线段的比值.本题体现了初中数学的类比、转化、从特殊到一般等思想方法,有利于学生触类旁通、举一反三.

练习册系列答案
相关题目
11.善于学习的小敏查资料知道:对应角相等,对应边成比例的两个梯形,叫做相似梯形.他想到“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”,提出如下两个问题,你能帮助解决吗?
【问题一】平行于梯形底边的直线截两腰所得的小梯形和原梯形是否相似?
(1)从特殊情形入手探究.假设梯形ABCD中,AD∥BC,AB=6,BC=8,CD=4,AD=2,MN是中位线(如图①).根据相似梯形的定义,请你说明梯形AMND与梯形ABCD是否相似?
(2)一般结论:平行于梯形底边的直线截两腰所得的梯形与原梯形不相似(填“相似”或“不相似”或“相似性无法确定”,不要求证明)
【问题二】平行于梯形底边的直线截两腰所得的两个小梯形和原梯形是否相似?
(1)从特殊平行线入手探究,梯形的中位线截两腰所得的两个小梯形不相似(填“相似”或“不相似”或“相似性无法确定”,不要求证明)
(2)从特殊梯形入手探究.同上假设,梯形ABCD中,AD∥BC,AB=6,BC=8,CD=4,AD=2,你能找到与梯形底边平行的直线PQ(点PQ在梯形的两腰上,如图②),使得梯形APQD与梯形PBCQ相似吗?请根据相似梯形的定义说明理由.
(3)一般结论:对于任意梯形(如图③),一定存在(填“存在”或“不存在”)平行于梯形底边的直线PQ,使截得的两个小梯形相似?若存在,则确定这条平行线位置的条件是$\frac{AP}{PB}$=$\frac{\sqrt{ab}}{b}$(设AD=a,BC=b,AB=c,CD=d.用含a、b的式子表示 ).

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网