题目内容

4.解不等式组:$\left\{\begin{array}{l}{x-3(x-2)≥4}\\{\frac{1+2x}{3}<x+1}\end{array}\right.$,并把解集在下面数轴上表示出来.

分析 先求出不等式的解集,再求出不等式组的解集即可.

解答 解:$\left\{\begin{array}{l}{x-3(x-2)≥4①}\\{\frac{1+2x}{3}<x+1②}\end{array}\right.$
∵解不等式①得:x≤1,
解不等式②得:x>-2,
∴不等式组的解集为-2<x≤1,
在数轴上表示为:

点评 本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网