题目内容

15.完成下面推理步骤,并在每步后面的括号内填写出推理根据:
如图,已知AB∥CD,∠1=∠2,∠3=∠4,试说明AD∥BE.
解:∵AB∥CD(已知),
∴∠4=∠BAE(两直线平行,同位角相等),
∵∠3=∠4(已知)
∴∠3=∠BAE(等量代换),
∵∠1=∠2(已知),
∴∠CAE+∠1=∠CAE+∠2,
即∠BAE=∠DAC,
∴∠3=∠DAC,
∴AD∥BE(内错角相等,两直线平行).

分析 首先由平行线的性质可得∠4=∠BAE,然后结合已知,通过等量代换推出∠3=∠DAC,最后由内错角相等,两直线平行可得AD∥BE.

解答 解:∵AB∥CD(已知),
∴∠4=∠BAE(两直线平行,同位角相等),
∵∠3=∠4(已知)
∴∠3=∠BAE(等量代换),
∵∠1=∠2(已知),
∴∠CAE+∠1=∠CAE+∠2,
即∠BAE=∠DAC,
∴∠3=∠DAC,
∴AD∥BE(内错角相等,两直线平行).
故答案为:BAE;两直线平行,同位角相等;BAE;等量代换;1;2;BAE;DAC;DAC;内错角相等,两直线平行.

点评 本题主要考查平行线的性质和性质,掌握平行线的性质和判定是解题的关键,即①两直线平行?同位角相等,②两直线平行?内错角相等,③两直线平行?同旁内角互补,④a∥b,b∥c⇒a∥c.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网